Bài 1.25 trang 16 SBT giải tích 12

Giải bài 1.25 trang 16 SBT giải tích 12. Xác định giá trị m để hàm số sau không có cực trị...

Đề bài

Xác định giá trị của tham số \(m\) để hàm số sau không có cực trị: \(y = \dfrac{{{x^2} + 2mx - 3}}{{x - m}}\)

Phương pháp giải - Xem chi tiết

Hàm số không có cực trị khi đạo hàm của nó không đổi dấu trên tập xác định.

Lời giải chi tiết

Ta có: \(y = \dfrac{{{x^2} + 2mx - 3}}{{x - m}}\), TXĐ: \(D = \mathbb{R}\backslash \left\{ m \right\}\).

\(y' = \dfrac{{(2x + 2m)(x - m) - ({x^2} + 2mx - 3)}}{{{{\left( {x - m} \right)}^2}}}\)\( = \dfrac{{2{x^2} - 2{m^2} - {x^2} - 2mx + 3}}{{{{\left( {x - m} \right)}^2}}}\)\( = \dfrac{{{x^2} - 2mx - 2{m^2} + 3}}{{{{\left( {x - m} \right)}^2}}}\)

Hàm số không có cực trị nếu đạo hàm của nó không đổi dấu trên \(D\).

Xét  \(g\left( x \right) = {x^2}-2mx-2{m^2} + 3\) là tam thức bậc hai hệ số \(a > 0\) nên nếu nó không đổi dấu với mọi \(x \ne m\) thì \(\Delta ' = {m^2} + 2{m^2} - 3 \le 0\)\( \Leftrightarrow 3{m^2} - 3 \le 0 \Leftrightarrow  - 1 \le m \le 1\).

Khi \(-1 < m < 1\) thì phương trình \(g\left( x \right) = 0\) vô nghiệm hay \(y' = 0\) vô nghiệm và \(y'\; > 0\) với mọi \(x \ne m\). Khi đó, hàm số không có cực trị.

Khi \(m = 1\) hoặc \(m =  - 1\), hàm số đã cho trở thành \(y = x + 3\) (với \(x \ne 1\)) hoặc \(y = x-3\) (với\(x \ne  - 1\)). Các hàm số này không có cực trị.

Vậy hàm số đã cho không có cực trị khi \(-1 \le m \le 1\).

Xemloigiai.com

Xem thêm lời giải SBT Toán lớp 12

Giải sách bài tập toán hình học và giải tích lớp 12. Giải chi tiết tất cả câu hỏi trong các chương và bài chi tiết trong SBT hình học và giải tích toán 12 cơ bản với cách giải nhanh và ngắn gọn nhất

Lớp 12 | Các môn học Lớp 12 | Giải bài tập, đề kiểm tra, đề thi Lớp 12 chọn lọc

Danh sách các môn học Lớp 12 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.