Bài 13 trang 13 Vở bài tập toán 8 tập 1

Giải bài 13 trang 13 VBT toán 8 tập 1. Chứng minh rằng: a) (a+b)^2 = (a-b)^2 + 4ab...

Bài làm:

Chứng minh rằng:

LG a

\({\left( {a + b} \right)^2} = {\left( {a - b} \right)^2} + 4ab;\) 

Phương pháp giải:

Áp dụng bình phương của một tổng, bình phương của một hiệu để biến đổi vế trái hoặc vế phải của từng đẳng thức, đưa về bằng vế còn lại.

\({\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\) 

\({\left( {A - B} \right)^2} = {A^2} - 2AB + {B^2}\) 

Giải chi tiết:

\(\eqalign{
&a)\; VT={\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2} \cr 
& \,\,\,\,\,\,\,\,\,\,\, \;\;\;\;= \left( {{a^2} - 2ab + {b^2}} \right) + 4ab \cr 
& \,\,\,\,\,\,\,\,\,\,\,\;\;\;\;= {\left( {a - b} \right)^2} + 4ab =VP\cr} \)

Áp dụng: 

  Tính \({\left( {a - b} \right)^2} = {7^2} - 4.12 = 49 - 48 = 1\) 


LG b

\({\left( {a - b} \right)^2} = {\left( {a + b} \right)^2} - 4ab.\)

Phương pháp giải:

Áp dụng bình phương của một tổng, bình phương của một hiệu để biến đổi vế trái hoặc vế phải của từng đẳng thức, đưa về bằng vế còn lại.

\({\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\)

\({\left( {A - B} \right)^2} = {A^2} - 2AB + {B^2}\)

Giải chi tiết:

\(\eqalign{
& b)\,\,VT = {\left( {a - b} \right)^2} \cr 
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = {a^2} - 2ab + {b^2} \cr 
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \left( {{a^2} + 2ab + {b^2}} \right) - 4ab \cr 
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = {\left( {a + b} \right)^2} - 4ab = VP \cr} \)

Áp dụng: 

Tính \({\left( {a + b} \right)^2} = {20^2} + 4.3 = 400 + 12 = 412\) 

Xemloigiai.com

Xem thêm lời giải Vở bài tập Toán 8

Giải VBT toán 8 với lời giải chi tiết kèm phương pháp cho tất cả các chương và các trang

Lớp 8 | Các môn học Lớp 8 | Giải bài tập, đề kiểm tra, đề thi Lớp 8 chọn lọc

Danh sách các môn học Lớp 8 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.