Bài 1.37 trang 21 SBT giải tích 12

Giải bài 1.37 trang 21 sách bài tập giải tích 12. Tìm các giá trị của m để phương trình...

Đề bài

Tìm các giá trị của m để phương trình \({x^3}-3{x^2}-m = 0\) có ba nghiệm phân biệt.

Phương pháp giải - Xem chi tiết

- Biến đổi phương trình về dạng \(m = {x^3} - 3{x^2}\).

- Xét hàm \(f\left( x \right) = {x^3} - 3{x^2}\), lập bảng biến thiên và suy ra điều kiện \(m\) cần tìm.

Số nghiệm của phương trình bằng số giao điểm của đường thẳng với đồ thị hàm số.

Lời giải chi tiết

Ta có: \({x^3}-3{x^2}-m = 0\)\( \Leftrightarrow m = {x^3} - 3{x^2}\)

Xét hàm \(f\left( x \right) = {x^3} - 3{x^2}\) có \(f'(x) = 3{x^2} - 6x\)\( = 3x(x - 2) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0}\\{x = 2}\end{array}} \right.\).

Bảng biến thiên:

Phương trình \({x^3}-3{x^2}-m = 0\) có ba nghiệm phân biệt khi và chỉ khi đường thẳng \(y = m\) cắt đồ thị hàm số \(y = f\left( x \right)\) tại ba điểm phân biệt.

Từ bảng biến thiên suy ra \( - 4 < m < 0\) thỏa mãn bài toán.

Xemloigiai.com

Xem thêm lời giải SBT Toán lớp 12

Giải sách bài tập toán hình học và giải tích lớp 12. Giải chi tiết tất cả câu hỏi trong các chương và bài chi tiết trong SBT hình học và giải tích toán 12 cơ bản với cách giải nhanh và ngắn gọn nhất

Lớp 12 | Các môn học Lớp 12 | Giải bài tập, đề kiểm tra, đề thi Lớp 12 chọn lọc

Danh sách các môn học Lớp 12 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.