Bài 2.14 trang 60 SBT hình học 12

Giải bài 2.14 trang 60 sách bài tập hình học 12. Hình chóp tam giác S.ABC có SA = SB = SC = a và có chiều cao bằng h. Xác định tâm và bán kính của mặt cầu ngoại tiếp hình chóp. Tính diện tích của mặt cầu đó.

Đề bài

Hình chóp tam giác S.ABC có SA = SB = SC = a và có chiều cao bằng h. Xác định tâm và bán kính của mặt cầu ngoại tiếp hình chóp. Tính diện tích của mặt cầu đó.

Phương pháp giải - Xem chi tiết

- Xác định tâm mặt cầu, giao của trung trực của SA với trục đường tròn chính (SO).

- Tính bán kính mặt cầu dựa vào các kiến thức hình học đã biết.

Lời giải chi tiết

Giả sử ta có mặt cầu tâm I đi qua các đỉnh S, A, B, C của hình chóp. Mặt phẳng (ABC) cắt mặt cầu ngoại tiếp hình chóp theo giao tuyến là đường tròn tâm O ngoại tiếp tam giác ABC.

Vì SA = SB = SC nên ta có \(\displaystyle SO \bot (ABC)\) và OS là trục của đường tròn tâm O.

Do đó \(\displaystyle SO \bot AO\). Trong tam giác SAO, đường trung trực của đoạn SA cắt SO tại I và ta được hai tam giác vuông đồng dạng là SIM và SAO, với M là trung điểm của cạnh SA.

Ta có \(\displaystyle {{SI} \over {SA}} = {{SM} \over {SO}} = {{SA} \over {2SO}}\) với \(SI = IA = IB = IC = r\)

Vậy \(\displaystyle r = SI = {{S{A^2}} \over {2SO}} = {{{a^2}} \over {2h}}\)

Do đó diện tích của mặt cầu ngoại tiếp hình chóp S.ABC đã cho là :

\(\displaystyle S = 4\pi {r^2} = 4\pi {({{{a^2}} \over {2h}})^2}\) \(\displaystyle = \pi {{{a^4}} \over {{h^2}}}\)

Xemloigiai.com

Xem thêm lời giải SBT Toán lớp 12

Giải sách bài tập toán hình học và giải tích lớp 12. Giải chi tiết tất cả câu hỏi trong các chương và bài chi tiết trong SBT hình học và giải tích toán 12 cơ bản với cách giải nhanh và ngắn gọn nhất

Lớp 12 | Các môn học Lớp 12 | Giải bài tập, đề kiểm tra, đề thi Lớp 12 chọn lọc

Danh sách các môn học Lớp 12 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.