Bài 2.23 trang 110 SBT giải tích 12

Giải bài 2.23 trang 110 SBT giải tích 12. Tìm số dương trong các số sau đây...

Đề bài

Tìm số dương trong các số sau đây.

A. \(\displaystyle {\log _{\frac{2}{e}}}1,25\)                     B. \(\displaystyle {\log _{\frac{1}{3}}}0,25\)

C. \(\displaystyle \ln \frac{1}{{{e^2}}}\)                           D. \(\displaystyle {\log _{\frac{1}{e}}}3\)

Phương pháp giải - Xem chi tiết

Sử dụng tính chất so sánh logarit:

+ Nếu \(\displaystyle a > 1\) thì \(\displaystyle {\log _a}m < {\log _a}n \Leftrightarrow m < n\).

+ Nếu \(\displaystyle 0 < a < 1\) thì \(\displaystyle {\log _a}m < {\log _a}n \Leftrightarrow m > n\).

Lời giải chi tiết

Đáp án A: Vì \(\displaystyle \frac{2}{e} < 1\) và \(\displaystyle 1,25 > 1\) nên \(\displaystyle {\log _{\frac{2}{e}}}1,25 < {\log _{\frac{2}{e}}}1 = 0\) hay \(\displaystyle {\log _{\frac{2}{e}}}1,25 < 0\).

Đáp án B: Vì \(\displaystyle 0 < \frac{1}{3} < 1\) và \(\displaystyle 0,25 < 1\) nên \(\displaystyle {\log _{\frac{1}{3}}}0,25 > {\log _{\frac{1}{3}}}1 = 0\) hay \(\displaystyle {\log _{\frac{1}{3}}}0,25 > 0\).

Đáp án C: Ta có: \(\displaystyle \ln \frac{1}{{{e^2}}} = \ln \left( {{e^{ - 2}}} \right) =  - 2 < 0\).

Đáp án D: Vì \(\displaystyle \frac{1}{e} < 1\) và \(\displaystyle 3 > 1\) nên \(\displaystyle {\log _{\frac{1}{e}}}3 < {\log _{\frac{1}{e}}}1 = 0\) hay \(\displaystyle {\log _{\frac{1}{e}}}3 < 0\).

Chọn B.

Chú ý:

Các em có thể giải nhanh bằng cách bấm máy tính và kết luận.

Xemloigiai.com

Xem thêm lời giải SBT Toán lớp 12

Giải sách bài tập toán hình học và giải tích lớp 12. Giải chi tiết tất cả câu hỏi trong các chương và bài chi tiết trong SBT hình học và giải tích toán 12 cơ bản với cách giải nhanh và ngắn gọn nhất

Lớp 12 | Các môn học Lớp 12 | Giải bài tập, đề kiểm tra, đề thi Lớp 12 chọn lọc

Danh sách các môn học Lớp 12 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.