Bài 26 trang 59 Sách bài tập Hình học lớp 12 Nâng cao

Cho hình lăng trụ đứng ABCD.A’B’C’D’

Bài làm:

Cho hình lăng trụ đứng ABCD.A’B’C’D’ có đáy ABCD là hình thang cân với đáy nhỏ AB = a, đáy lớn CD = 4a, cạnh bên \({{5a} \over 2}\); chiều cao hình lăng trụ bằng h.

1) Chứng minh rằng có hình trụ nội tiếp hình lăng trụ đã cho.

2) Tính diện tích toàn phần và thể tích của hình lăng trụ đó.

Giải

1) Vì hình lăng trụ đã cho là hình lăng trụ đứng nên chỉ cần chứng minh đáy ABCD có đường tròn nội tiếp.

Gọi IJ lần lượt là trung điểm của ABCD thì \({\rm{IJ}} \bot AB,IJ \bot CD.\) Gọi O là trung điểm của IJ thì \(OI = {\rm{OJ}} = {{{\rm{IJ}}} \over 2}.\) Kẻ \(BH \bot CD.\)

Ta có \({\rm{IJ}} = BH = \sqrt {B{C^2} - H{C^2}} \)

               \( = \sqrt {{{25{a^2}} \over 4} - {{\left( {2a - {a \over 2}} \right)}^2}}  = 2a.\)

Vậy OI = OJ = a.

Mặt khác \(O{B^2} = O{I^2} + I{B^2}\)

               \(\eqalign{  & \;\;\;\;\;\;\;\; = {a^2} + {{{a^2}} \over 4} = {{5{a^2}} \over 4},  \cr  & O{C^2} = {\rm{O}}{{\rm{J}}^2} + J{C^2}  \cr  &  \;\;\;\;\;\;\;\;\;= {a^2} + 4{a^2} = 5{a^2}, \cr} \)

từ đó ta có \(B{C^2} = O{B^2} + O{C^2}.\)

Kẻ đường cao OK của tam giác vuông OBC thì OK.BC = OB.OC, suy ra

\(OK = {{{{a\sqrt 5 } \over 2}.a\sqrt 5 } \over {{{5a} \over 2}}} = a.\)

Vậy O là tâm đường tròn nội tiếp hình thang cân ABCD.

Vậy hình trụ có trục OO’O, O’ là tâm hai đường tròn đáy) và bán kính đáy bằng a chính là hình trụ nội tiếp hình lăng trụ đã cho.

2) Diện tích toàn phần của hình trụ đó là

\(S = 2\pi {a^2} + 2\pi ah = 2\pi a(a + h)\)

Và thể tích hình trụ đó là

\(V = \pi {a^2}h.\)

Chú ý. Có thể giải thích ABCD có đường tròn nội tiếp bởi điều kiện

AB + CD = BC + AD.

Xemloigiai.com

Xem thêm lời giải SBT Toán 12 Nâng cao

Lời giải chi tiết, đáp án bài tập SBT Giải tích, Hình học 12 Nâng cao. Tất cả lý thuyết, bài tập vận dụng, thực hành Toán 12 Nâng cao

PHẦN SBT GIẢI TÍCH 12 NÂNG CAO

PHẦN SBT HÌNH HỌC 12 NÂNG CAO

CHƯƠNG I: ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ

CHƯƠNG II: HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT

CHƯƠNG III: NGUYÊN HÀM, PHÂN TÍCH VÀ ỨNG DỤNG

CHƯƠNG IV: SỐ PHỨC

CHƯƠNG I: KHỐI ĐA DIỆN VÀ THỂ TÍCH CỦA CHÚNG

CHƯƠNG II: MẶT CẦU, MẶT TRỤ, MẶT NÓN

CHƯƠNG III: PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN

Lớp 12 | Các môn học Lớp 12 | Giải bài tập, đề kiểm tra, đề thi Lớp 12 chọn lọc

Danh sách các môn học Lớp 12 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.