Bài 2.60 trang 132 SBT giải tích 12

Giải bài 2.60 trang 132 sách bài tập giải tích 12. Giải các bất phương trình logarit sau:

Bài làm:

Giải các bất phương trình logarit sau:

LG a

\(\displaystyle {\log _{\frac{1}{3}}}(x - 1) \ge  - 2\)

Phương pháp giải:

Biến đổi bất phương trình dạng cơ bản và sử dụng so sánh logarit:

+ Nếu \(\displaystyle 0 < a < 1\) thì \(\displaystyle {\log _a}f\left( x \right) > {\log _a}g\left( x \right)\) \(\displaystyle  \Leftrightarrow f\left( x \right) < g\left( x \right)\).

+ Nếu \(\displaystyle a > 1\) thì \(\displaystyle {\log _a}f\left( x \right) > {\log _a}g\left( x \right)\) \(\displaystyle  \Leftrightarrow f\left( x \right) > g\left( x \right)\).

Lời giải chi tiết:

Điều kiện: \(\displaystyle x - 1 > 0 \Leftrightarrow x > 1\).

\(\displaystyle {\log _{\frac{1}{3}}}(x - 1) \ge  - 2\)\(\displaystyle  \Leftrightarrow x - 1 \le {\left( {\frac{1}{3}} \right)^{ - 2}}\)\(\displaystyle  \Leftrightarrow x - 1 \le 9\)\(\displaystyle  \Leftrightarrow x \le 10\)

Kết hợp điều kiện ta được \(\displaystyle 1 < x \le 10\).


LG b

\(\displaystyle {\log _3}(x - 3) + {\log _3}(x - 5) < 1\)

Phương pháp giải:

Biến đổi bất phương trình dạng cơ bản và sử dụng so sánh logarit:

+ Nếu \(\displaystyle 0 < a < 1\) thì \(\displaystyle {\log _a}f\left( x \right) > {\log _a}g\left( x \right)\) \(\displaystyle  \Leftrightarrow f\left( x \right) < g\left( x \right)\).

+ Nếu \(\displaystyle a > 1\) thì \(\displaystyle {\log _a}f\left( x \right) > {\log _a}g\left( x \right)\) \(\displaystyle  \Leftrightarrow f\left( x \right) > g\left( x \right)\).

Lời giải chi tiết:

Điều kiện: \(\displaystyle \left\{ \begin{array}{l}x - 3 > 0\\x - 5 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x > 3\\x > 5\end{array} \right. \Leftrightarrow x > 5\).

Khi đó bpt\(\displaystyle  \Leftrightarrow {\log _3}{\rm{[}}(x - 3)(x - 5){\rm{]}} < {\log _3}3\) \(\displaystyle  \Leftrightarrow \left( {x - 3} \right)\left( {x - 5} \right) < 3\) \(\displaystyle  \Leftrightarrow {x^2} - 8x + 15 < 3\)

\(\displaystyle  \Leftrightarrow {x^2} - 8x + 12 < 0\) \(\displaystyle  \Leftrightarrow 2 < x < 6\).

Kết hợp điều kiện ta được \(\displaystyle 5 < x < 6\).


LG c

\(\displaystyle {\log _{\frac{1}{2}}}\frac{{2{x^2} + 3}}{{x - 7}} < 0\)

Phương pháp giải:

Biến đổi bất phương trình dạng cơ bản và sử dụng so sánh logarit:

+ Nếu \(\displaystyle 0 < a < 1\) thì \(\displaystyle {\log _a}f\left( x \right) > {\log _a}g\left( x \right)\) \(\displaystyle  \Leftrightarrow f\left( x \right) < g\left( x \right)\).

+ Nếu \(\displaystyle a > 1\) thì \(\displaystyle {\log _a}f\left( x \right) > {\log _a}g\left( x \right)\) \(\displaystyle  \Leftrightarrow f\left( x \right) > g\left( x \right)\).

Lời giải chi tiết:

Điều kiện: \(\displaystyle \frac{{2{x^2} + 3}}{{x - 7}} > 0\) \(\displaystyle  \Leftrightarrow x - 7 > 0\)(vì \(2x^2+3>0,\forall x\in R\))

\( \Leftrightarrow x > 7\).

Khi đó bpt\(\displaystyle  \Leftrightarrow \frac{{2{x^2} + 3}}{{x - 7}} > {\left( {\frac{1}{2}} \right)^0} = 1\) \(\displaystyle  \Leftrightarrow 2{x^2} + 3 > x - 7\) (vì \(x-7 > 0,\forall x>7\))

\(\displaystyle  \Leftrightarrow 2{x^2} - x + 10 > 0\)

(luôn đúng vì \(a=2>0\) và \(\Delta  = {1^2} - 4.2.10 =  - 79 < 0\)).

Vậy bất phương trình có nghiệm \(\displaystyle x > 7\).


LG d

\(\displaystyle {\log _{\frac{1}{3}}}{\log _2}{x^2} > 0\)

Phương pháp giải:

Biến đổi bất phương trình dạng cơ bản và sử dụng so sánh logarit:

+ Nếu \(\displaystyle 0 < a < 1\) thì \(\displaystyle {\log _a}f\left( x \right) > {\log _a}g\left( x \right)\) \(\displaystyle  \Leftrightarrow f\left( x \right) < g\left( x \right)\).

+ Nếu \(\displaystyle a > 1\) thì \(\displaystyle {\log _a}f\left( x \right) > {\log _a}g\left( x \right)\) \(\displaystyle  \Leftrightarrow f\left( x \right) > g\left( x \right)\).

Lời giải chi tiết:

Điều kiện: \(\displaystyle \left\{ \begin{array}{l}{x^2} > 0\\{\log _2}{x^2} > 0\end{array} \right.\) \(\displaystyle  \Leftrightarrow \left\{ \begin{array}{l}x \ne 0\\{x^2} > {2^0} = 1\end{array} \right.\) \(\displaystyle  \Leftrightarrow \left\{ \begin{array}{l}x \ne 0\\\left[ \begin{array}{l}x > 1\\x <  - 1\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x > 1\\x <  - 1\end{array} \right.\)

Khi đó bpt\(\displaystyle  \Leftrightarrow {\log _{\frac{1}{3}}}{\log _2}{x^2} > {\log _{\frac{1}{3}}}1\) \(\displaystyle  \Leftrightarrow {\log _2}{x^2} < 1 \Leftrightarrow {x^2} < 2\) \(\displaystyle  \Leftrightarrow  - \sqrt 2  < x < \sqrt 2 \)

Kết hợp điều kiện ta được \(\displaystyle \left[ \begin{array}{l}1 < x < \sqrt 2 \\ - \sqrt 2  < x <  - 1\end{array} \right.\).


LG e

\(\displaystyle \frac{1}{{5 - \log x}} + \frac{2}{{1 + \log x}} < 1\)

Phương pháp giải:

- Đặt ẩn phụ \(\displaystyle t = \log x\), biến đổi bất phương trình về ẩn \(\displaystyle t\).

- Giải bất phương trình và kết luận.

Lời giải chi tiết:

Điều kiện: \(\displaystyle \left\{ \begin{array}{l}x > 0\\\log x \ne 5\\\log x \ne  - 1\end{array} \right.\) 

\( \Leftrightarrow \left\{ \begin{array}{l}
x > 0\\
x \ne {10^5}\\
x \ne {10^{ - 1}}
\end{array} \right.\)

Đặt \(\displaystyle t = \log x\) với điều kiện \(\displaystyle t \ne 5,t \ne  - 1\) ta có:

\(\begin{array}{l}
 \frac{1}{{5 - t}} + \frac{2}{{1 + t}} - 1 < 0\\
\Leftrightarrow \frac{{1 + t + 2\left( {5 - t} \right) - \left( {5 - t} \right)\left( {1 + t} \right)}}{{\left( {5 - t} \right)\left( {1 + t} \right)}} < 0\\
\Leftrightarrow \frac{{1 + t + 10 - 2t - 5 - 4t + {t^2}}}{{\left( {5 - t} \right)\left( {1 + t} \right)}} < 0\\
\Leftrightarrow \frac{{{t^2} - 5t + 6}}{{\left( {5 - t} \right)\left( {1 + t} \right)}} < 0\\
\Leftrightarrow \frac{{\left( {t - 2} \right)\left( {t - 3} \right)}}{{\left( {5 - t} \right)\left( {1 + t} \right)}} < 0
\end{array}\)

Xét dấu VT ta được: \(\displaystyle  \left[ \begin{array}{l}t <  - 1\\2 < t < 3\\t > 5\end{array} \right.\)

TH1: \(\displaystyle t <  - 1\) suy ra \(\displaystyle \log x <  - 1 \Leftrightarrow x < \frac{1}{{10}}\).

TH2: \(\displaystyle 2 < t < 3\) suy ra \(\displaystyle 2 < \log x < 3 \Leftrightarrow 100 < x < 1000\).

TH3: \(\displaystyle t > 5\) suy ra \(\displaystyle \log x > 5 \Leftrightarrow x > {10^5}\).

Kết hợp với điều kiện ta được \(\displaystyle 0 < x < \frac{1}{{10}}\) hoặc \(\displaystyle 100 < x < 1000\) hoặc \(\displaystyle x > 100000\).


LG g

\(\displaystyle 4{\log _4}x - 33{\log _x}4 \le 1\)

Phương pháp giải:

- Đặt ẩn phụ \(\displaystyle t = {\log _4}x\), biến đổi bất phương trình về ẩn \(\displaystyle t\).

- Giải bất phương trình và suy ra nghiệm.

Lời giải chi tiết:

Điều kiện \(\displaystyle x > 0,x \ne 1\).

Đặt \(\displaystyle t = {\log _4}x \Rightarrow x = {4^t}\), ta có:

\(\begin{array}{l}
4t - 33{\log _{{4^t}}}4 \le 1\\
\Leftrightarrow 4t - \frac{{33}}{t}{\log _4}4 \le 1\\
\Leftrightarrow 4t - \frac{{33}}{t} \le 1
\end{array}\)

\(\displaystyle  \Leftrightarrow \frac{{4{t^2} - t - 33}}{t} \le 0\)\(\displaystyle  \Leftrightarrow \frac{{(4t + 11)(t - 3)}}{t} \le 0\) \(\displaystyle  \Leftrightarrow \left[ \begin{array}{l}t \le  - \frac{{11}}{4}\\0 < t \le 3\end{array} \right.\)

\(\displaystyle  \Rightarrow \left[ \begin{array}{l}{\log _4}x \le  - \frac{{11}}{4}\\0 < {\log _4}x \le 3\end{array} \right.\) \(\displaystyle  \Leftrightarrow \left[ \begin{array}{l}0 < x \le {4^{ - \frac{{11}}{4}}}\\1 < x \le 64\end{array} \right.\)

Xemloigiai.com

Xem thêm lời giải SBT Toán lớp 12

Giải sách bài tập toán hình học và giải tích lớp 12. Giải chi tiết tất cả câu hỏi trong các chương và bài chi tiết trong SBT hình học và giải tích toán 12 cơ bản với cách giải nhanh và ngắn gọn nhất

Lớp 12 | Các môn học Lớp 12 | Giải bài tập, đề kiểm tra, đề thi Lớp 12 chọn lọc

Danh sách các môn học Lớp 12 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.