Bài 3.21 trang 172 SBT giải tích 12

Giải bài 3.21 trang 172 sách bài tập giải tích 12. Giả sử hàm số f(x) liên tục trên đoạn [-a;a]. Chứng minh rằng:...

Đề bài

Giả sử hàm số \(f\left( x \right)\) liên tục trên đoạn \(\left[ { - a;a} \right]\). Chứng minh rằng:

\(\int\limits_{ - a}^a {f(x)dx = } \left\{ \begin{array}{l}2\int\limits_0^a {f(x)dx} \,\,\left( 1 \right)\\0,\,\,\,\left( 2 \right)\end{array} \right.\)

(1): nếu \(f\) là hàm số chẵn.

(2): nếu \(f\) là hàm số lẻ.

Áp dụng để tính: \(\int\limits_{ - 2}^2 {\ln \left( {x + \sqrt {1 + {x^2}} } \right)dx} \)

Phương pháp giải - Xem chi tiết

Đổi biến tính tích phân rồi suy ra điều phải chứng minh.

Lời giải chi tiết

Giả sử hàm số \(f\left( x \right)\) là hàm số chẵn trên đoạn \(\left[ { - a;a} \right]\), ta có: \(\int\limits_{ - a}^a {f(x)dx}  = \int\limits_{ - a}^0 {f(x)dx}  + \int\limits_0^a {f(x)dx} \)

Đổi biến \(x =  - t\) đối với tích phân \(\int\limits_{ - a}^0 {f(x)dx} \), ta được:

\(\int\limits_{ - a}^0 {f(x)dx}  =  - \int\limits_a^0 {f( - t)dt} \)\( = \int\limits_0^a {f(t)dt}  = \int\limits_0^a {f(x)dx} \)

Vậy \(\int\limits_{ - a}^a {f(x)dx = 2\int\limits_0^a {f(x)dx} } \)

Trường hợp sau chứng minh tương tự.

Áp dụng:

Ta có: \(g( - x) = \ln \left( { - x + \sqrt {1 + {{\left( { - x} \right)}^2}} } \right)\)\( = \ln \left( { - x + \sqrt {1 + {x^2}} } \right)\) \( = \ln \left( {\dfrac{1}{{x + \sqrt {1 + {x^2}} }}} \right)\) \( =  - \ln \left( {x + \sqrt {1 + {x^2}} } \right) =  - g\left( x \right)\)

Nên \(g(x) = \ln \left( {x + \sqrt {1 + {x^2}} } \right)\) là hàm số lẻ trên đoạn \(\left[ { - 2;2} \right]\) nên \(\int\limits_{ - 2}^2 {g(x)dx = 0} \)

Xemloigiai.com

Xem thêm lời giải SBT Toán lớp 12

Giải sách bài tập toán hình học và giải tích lớp 12. Giải chi tiết tất cả câu hỏi trong các chương và bài chi tiết trong SBT hình học và giải tích toán 12 cơ bản với cách giải nhanh và ngắn gọn nhất

Lớp 12 | Các môn học Lớp 12 | Giải bài tập, đề kiểm tra, đề thi Lớp 12 chọn lọc

Danh sách các môn học Lớp 12 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.