Bài 34 trang 61 Sách bài tập Hình học lớp 12 Nâng cao

Cho hình nón N có bán kính đáy R,

Bài làm:

Cho hình nón N  có bán kính đáy R, đường cao SO. Gọi (P) là mặt phẳng vuông góc với SO tại O1 sao cho \(S{O_1} = {1 \over 3}SO.\) Một mặt phẳng qua trục hình nón cắt phần khối nón N  nằm giữa (P) và đáy hình nón theo thiết diện là hình tứ giác có hai đường chéo vuông góc.

Tính thể tích phần hình nón N nằm giữa mặt phẳng (P) và mặt phẳng chứa đáy hình nón N.

Giải

Gọi thiết diện thu được là \({\rm{A}}{{\rm{A}}_1}{B_1}B\).

Vì \(S{O_1} = {1 \over 3}SO\) nên

\({A_1}{B_1} = {1 \over 3}AB = {1 \over 3}.2R.\)

Mặt khác \(A{B_1} \bot {A_1}B\) tại I nên

\(IO = {1 \over 2}AB,I{O_1} = {1 \over 2}{A_1}{B_1}.\)

Vậy \(O{O_1} = R + {R \over 3} = {{4R} \over 3}.\)

Dễ thấy \(S{O_1} = {1 \over 2}O{O_1} = {{2R} \over 3}.\)

Từ đó \(SO = 2R.\)

Gọi thể tích phần hình nón phải tính là \(V^ * \) thì \(V^ *  = {V_1} - {V_2}\), trong đó :

V1 là thể tích của hình nón N.

V2 là thể tích hình nón đỉnh S và đáy là thiết diện của N. được cắt bởi (P).

Ta có thể tích phần hình nón phải tính là

\(\eqalign{  & V ^*  = {V_1} - {V_2} = {1 \over 3}\pi .O{B^2}.SO - {1 \over 3}\pi .{O_1}{B_1}^2.S{O_1}  \cr  &  = {1 \over 3}\pi ({R^2}.2R - {{{R^2}} \over 9}.{{2R} \over 3}) = {{52\pi {R^3}} \over {81}}. \cr} \)

Xemloigiai.com

Xem thêm lời giải SBT Toán 12 Nâng cao

Lời giải chi tiết, đáp án bài tập SBT Giải tích, Hình học 12 Nâng cao. Tất cả lý thuyết, bài tập vận dụng, thực hành Toán 12 Nâng cao

PHẦN SBT GIẢI TÍCH 12 NÂNG CAO

PHẦN SBT HÌNH HỌC 12 NÂNG CAO

CHƯƠNG I: ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ

CHƯƠNG II: HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT

CHƯƠNG III: NGUYÊN HÀM, PHÂN TÍCH VÀ ỨNG DỤNG

CHƯƠNG IV: SỐ PHỨC

CHƯƠNG I: KHỐI ĐA DIỆN VÀ THỂ TÍCH CỦA CHÚNG

CHƯƠNG II: MẶT CẦU, MẶT TRỤ, MẶT NÓN

CHƯƠNG III: PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN

Lớp 12 | Các môn học Lớp 12 | Giải bài tập, đề kiểm tra, đề thi Lớp 12 chọn lọc

Danh sách các môn học Lớp 12 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.