Bài 3.41 trang 132 SBT hình học 12

Giải bài 3.41 trang 132 sách bài tập hình học 12. Cho điểm M(1; -1; 2) và mặt phẳng: 2x – y + 2z + 12 = 0...

Bài làm:

Cho điểm M(1; -1; 2) và mặt phẳng \((\alpha )\): 2x – y + 2z + 12 = 0

LG a

Tìm tọa độ điểm H là hình chiếu vuông góc của điểm M trên mặt phẳng \((\alpha )\);

Phương pháp giải:

- Viết phương trình tham số của đường thẳng \(\Delta \) đi qua \(M\) và vuông góc \(\left( \alpha  \right)\).

- Tìm giao điểm của \(\Delta \) và \(\left( \alpha  \right)\).

Lời giải chi tiết:

Phương trình tham số của đường thẳng \(\Delta \) đi qua điểm M(1; -1; 2) và vuông góc với mặt phẳng \((\alpha )\) : 2x – y + 2z + 12 = 0 là: \(\Delta :\left\{ {\begin{array}{*{20}{c}}{x = 1 + 2t}\\{y =  - 1 - t}\\{z = 2 + 2t}\end{array}} \right.\)

Xét điểm H(1 + 2t; -1 – t ; 2 + 2t) \( \in \Delta \)

Ta có \(H \in (\alpha )\)\( \Leftrightarrow 2(1 + 2t) + (1 + t)\)\( + 2(2 + 2t) + 12 = 0\)  \( \Leftrightarrow t = \dfrac{{ - 19}}{9}\)

Vậy ta được \(H\left( {\dfrac{{ - 29}}{9};\dfrac{{10}}{9};\dfrac{{ - 20}}{9}} \right)\)


LG b

Tìm tọa độ điểm M’ đối xứng với M qua mặt phẳng \((\alpha )\).

Phương pháp giải:

\(M'\) đối xứng với \(M\) qua \(\left( \alpha  \right)\) \( \Leftrightarrow H\) là trung điểm của \(MM'\).

Lời giải chi tiết:

H là trung điểm của MM’, suy ra  \({x_{M'}} = 2{x_H} - {x_M} = \dfrac{{ - 58}}{9} - 1 = \dfrac{{ - 67}}{9}\)

\({y_{M'}} = 2{y_H} - {y_M} = \dfrac{{20}}{9} + 1 = \dfrac{{29}}{9}\)

\({z_{M'}} = 2{z_H} - {z_M} = \dfrac{{ - 40}}{9} - 2 = \dfrac{{ - 58}}{9}\)

Vậy ta được \(M'\left( {\dfrac{{ - 67}}{9};\dfrac{{29}}{9};\dfrac{{ - 58}}{9}} \right)\)

Xemloigiai.com

Xem thêm lời giải SBT Toán lớp 12

Giải sách bài tập toán hình học và giải tích lớp 12. Giải chi tiết tất cả câu hỏi trong các chương và bài chi tiết trong SBT hình học và giải tích toán 12 cơ bản với cách giải nhanh và ngắn gọn nhất

Lớp 12 | Các môn học Lớp 12 | Giải bài tập, đề kiểm tra, đề thi Lớp 12 chọn lọc

Danh sách các môn học Lớp 12 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.