Bài 6 trang 54 Sách bài tập Hình học lớp 12 Nâng cao

Cho hình chóp tứ giác đều S.ABCD

Bài làm:

Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, chiều cao SH bằng \({a \over 2}.\)

1) Chứng minh rằng tồn tại mặt cầu tâm H tiếp xúc với tất cả các mặt bên của hình chóp. Tính bán kính R của mặt cầu đó.

2) Gọi (P) là mặt phẳng song song với mp(ABCD) và cách mp(ABCD) một khoảng x (0 < x < R). Gọi Std là diện tích thiết diện tạo bởi mp(P) và hình chóp bỏ đi phần nằm trong mặt cầu. Hãy xác định x để \({S_{td}} = \pi {R^2}.\)

Giải

(h.52)

1) Gọi I là trung điểm của BC thì \(HI = {a \over 2} = SH.\)

Gọi J là trung điểm của SI thì \(HJ \bot SI,\) mặt khác \(HJ \bot BC\), vậy \(HJ \bot mp(SBC)\) đồng thời \(HJ = {{SI} \over 2} = {1 \over 2}.{a \over 2}\sqrt 2  = {{a\sqrt 2 } \over 4}.\)

Tương tự, ta có khoảng cách từ H tới các mặt bên của hình chóp đã cho cũng bằng \({{a\sqrt 2 } \over 4}.\)

Như vậy, mặt cầu tiếp xúc với các mặt bên của hình chóp S.ABCD.

2) Gọi H1 là giao điểm của (P)SH thì \(H{H_1} = x,0 < H{H_1} < R\) và thiết diện của hình chóp với (P) là hình vuông \({A_1}{B_1}{C_1}{D_1}.\) Khi ấy

\({{{S_{{A_1}{B_1}{C_1}{D_1}}}} \over {{S_{ABCD}}}} = {\left( {{{{a \over 2} - x} \over {{a \over 2}}}} \right)^2} = {{{{\left( {a - 2x} \right)}^2}} \over {{a^2}}}.\)

Từ đó \({S_{{A_1}{B_1}{C_1}{D_1}}} = {(a - 2x)^2}.\)

Ta có (P) cắt mặt cầu nêu trên theo đường tròn bán kính r được tính bởi \({r^2} = {R^2} - {x^2}\) hay \({r^2} = {{{a^2}} \over 8} - {x^2} = {{{a^2} - 8{x^2}} \over 8},\) từ đó diện tích hình tròn thu được là \({1 \over 8}\pi \left( {{a^2} - 8{x^2}} \right).\)Vậy

\(\eqalign{   {S_{td}} &= {(a - 2x)^2} - {1 \over 8}\pi ({a^2} - 8{x^2}) \cr&= {1 \over 8}\left[ {8{{(a - 2x)}^2} - \pi ({a^2} - 8{x^2})} \right].  \cr  &  \cr} \)

Ta có

\(\eqalign{  & {S_{td}} = \pi {R^2} = {1 \over 8}\pi {a^2} \cr&\Leftrightarrow 8{(a - 2x)^2} - \pi {a^2} + 8\pi {x^2} = \pi {a^2}  \cr  &  \Leftrightarrow 4\left[ {{{(a - 2x)}^2} + \pi {x^2}} \right] = \pi {a^2}  \cr  &  \Leftrightarrow x = {{4a - \pi a} \over {8 + 2\pi }} \cr} \)

(vì \(0 < x < R = {{a\sqrt 2 } \over 4}\)).

Xemloigiai.com

Xem thêm lời giải SBT Toán 12 Nâng cao

Lời giải chi tiết, đáp án bài tập SBT Giải tích, Hình học 12 Nâng cao. Tất cả lý thuyết, bài tập vận dụng, thực hành Toán 12 Nâng cao

PHẦN SBT GIẢI TÍCH 12 NÂNG CAO

PHẦN SBT HÌNH HỌC 12 NÂNG CAO

CHƯƠNG I: ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ

CHƯƠNG II: HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT

CHƯƠNG III: NGUYÊN HÀM, PHÂN TÍCH VÀ ỨNG DỤNG

CHƯƠNG IV: SỐ PHỨC

CHƯƠNG I: KHỐI ĐA DIỆN VÀ THỂ TÍCH CỦA CHÚNG

CHƯƠNG II: MẶT CẦU, MẶT TRỤ, MẶT NÓN

CHƯƠNG III: PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN

Lớp 12 | Các môn học Lớp 12 | Giải bài tập, đề kiểm tra, đề thi Lớp 12 chọn lọc

Danh sách các môn học Lớp 12 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.