Câu 4.23 trang 180 sách bài tập Giải tích 12 Nâng cao

a) Chứng minh rằng nếu ba số phức

Bài làm:

LG a

Chứng minh rằng nếu ba số phức  \({z_1},{z_2},{z_3}\) thỏa mãn

                    \(\left\{ \matrix{\left| {{z_1}} \right| = \left| {{z_2}} \right| = \left| {{z_3}} \right| = 1 \hfill \cr{z_1} + {z_2} + {z_3} = 1 \hfill \cr}  \right.\)

Thì một trong ba số đó phải bằng 1

Giải chi tiết:

Viết \(1 - {z_1} = {z_2} + {z_3}\)

Nếu \({z_1} = 1\) thì \({z_2} + {z_3} = 0\)

Nếu \({z_1} \ne 1\) thì \(1 - {z_1} \ne 0\), điểm P biểu diễn số \(1 + \left( { - {z_1}} \right) = {z_2} + {z_3}\) không trùng với O nên do \(1 = \left| { - {z_1}} \right| = \left| {{z_2}} \right| = \left| {{z_3}} \right|\), đường trung trực OP cắt đường tròn đơn vị tại hai điểm biểu diễn \(1, - {z_1}\) và cũng là hai điểm biểu diễn \({z_2},{z_3}\) (h.4.7). Vậy \({z_2} = 1,{z_3} =  - {z_1}\) hoặc \({z_2} =  - {z_1},{z_3} = 1\). Tóm lại hoặc \({z_1} = 1\) hoặc \({z_2} = 1\) hoặc \({z_3} = 1\) và tổng hai số z còn lại bằng 0


LG b

Giải hệ phương trình ba ẩn phức \({z_1},{z_2},{z_3}\) sau:

                    \(\left\{ \matrix{ \left| {{z_1}} \right| = \left| {{z_2}} \right| = \left| {{z_3}} \right| = 1 \hfill \cr{z_1}{z_2} + {z_3} = 1 \hfill \cr{z_1}{z_2}{z_3} = 1 \hfill \cr}  \right.\)

Giải chi tiết:

Từ hai phương trình đầu của hệ, theo câu a) có thể coi \({z_1} = 1,{z_2} + {z_3} = 0\). Khi đó điều kiện \(z_1z_2z_3=1\) kéo theo hoặc \({z_2} = i,{z_3} =  - i\) hoặc \({z_2} =  - i,{z_3} = i.\). Suy ra hệ có 6 nghiệm do đổi chỗ các phần tử của bộ ba \(\left( {1,i, - i} \right)\)

             

Xemloigiai.com

Xem thêm lời giải SBT Toán lớp 12 Nâng cao

Giải sách bài tập toán hình học và giải tích lớp 12. Giải chi tiết tất cả câu hỏi trong các chương và bài chi tiết trong SBT hình học và đại số toán 12 nâng cao với cách giải nhanh và ngắn gọn nhất

GIẢI TÍCH SBT 12 NÂNG CAO

HÌNH HỌC SBT 12 NÂNG CAO

CHƯƠNG 1: ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ HÀM SỐ

CHƯƠNG II: HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT

CHƯƠNG III: NGUYÊN HÀM, PHÂN TÍCH VÀ ỨNG DỤNG

CHƯƠNG IV: SỐ PHỨC

CHƯƠNG 1: KHỐI ĐA DIỆN VÀ THỂ TÍCH CỦA CHÚNG

CHƯƠNG 2: MẶT CẦU, MẶT TRỤ, MẶT NÓN

CHƯƠNG III: PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN

Lớp 12 | Các môn học Lớp 12 | Giải bài tập, đề kiểm tra, đề thi Lớp 12 chọn lọc

Danh sách các môn học Lớp 12 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.