Câu 4.55 trang 184 sách bài tập Giải tích 12 Nâng cao

Trong mặt phằng phức xét ngũ giác đều ABCDE nội tiếp đường tròn đơn vị. A là điểm biểu diễn số 1

Bài làm:

Trong mặt phẳng phức xét ngũ giác đều ABCDE nội tiếp đường tròn đơn vị. A là điểm biểu diễn số 1 (giả sử đi dọc chu vi đa giác theo ngược chiều kim đồng hồ gặp các đỉnh kế tiếp B, C, D, E). Kí hiệu \({z_1},{z_2},{z_3},{z_4}\) là các số phức theo thứ tự biểu diễn bởi các điểm B, C, D, E.

LG a

Chứng minh rằng \(1,{z_1},{z_2},{z_3},{z_4}\) là các nghiệm của phương trình \({z^5} - 1 = 0\) và \({z_1} + {1 \over {{z_1}}} = 2\cos {{2\pi } \over 5}\)

Giải chi tiết:

\({z_1} = \cos {{2\pi } \over 5} + i\sin {{2\pi } \over 5},{z_2} = \cos {{4\pi } \over 5} + i\sin {{4\pi } \over 5}\)

   \({z_3} = \cos {{6\pi } \over 5} + i\sin {{6\pi } \over 5},{z_4} = \cos {{8\pi } \over 5} + i\sin {{8\pi } \over 5}\)

Từ đó theo công thức Moa-vrơ, \(1,{z_1},{z_2},{z_3},{z_4}\) là nghiệm các phương trình \({z^5} - 1 = 0\) (đó là tất cả các nghiệm vì phương trình có bậc 5).

\({z_1} + {1 \over {{z_1}}} = {z_1} + {\bar z_1} = 2\cos {{2\pi } \over 5}\)


LG b

Viết \({z^5} - 1 = \left( {z - 1} \right)\left( {{z^4} + {z^3} + {z^2} + z + 1} \right)\) rồi đưa phương trình \({z^4} + {z^3} + {z^2} + z + 1 = 0\) về phương trình bậc hai đối với ẩn phụ \({\rm{w}} = z + {1 \over z}\). Từ đó suy ra \(\cos {{2\pi } \over 5} = {{ - 1 + \sqrt 5 } \over 4}\)

Giải chi tiết:

Với \(z \ne 0,\)

\({z^4} + {z^3} + {z^2} + z + 1 = {z^2}\left( {{z^2} + {1 \over {{z^2}}} + z + {1 \over z} + 1} \right)\)

\( = {z^2}\left( {{{\left( {z + {1 \over z}} \right)}^2} + \left( {z + {1 \over z}} \right) - 1} \right) \)

\(= {z^2}\left( {{{\rm{w}}^2} + {\rm{w}} - 1} \right)\), trong đó \({\rm{w}} = z + {1 \over z}\)

Phương trình \({{\rm{w}}^2} + {\rm{w}} - 1 = 0\) có hai nghiệm là \({{ - 1 \pm \sqrt 5 } \over 2}\)

Vì \({z_1},{z_2},{z_3},{z_4}\) là bốn nghiệm của phương trình \({z^4} + {z^3} + {z^2} + z + 1 = 0\) tức là nghiệm của phương trình:

\({\left( {z + {1 \over z}} \right)^2} + \left( {z + {1 \over z}} \right) - 1 = 0\) và \({z_4} = {\bar z_1} = {1 \over {{z_1}}},{z_3} = {\bar z_2} = {1 \over {{z_2}}}\)  nên \({z_1} + {1 \over {{z_1}}},{z_2} + {1 \over {{z_2}}}\) là hai nghiệm phân biệt của phương trình \({{\rm{w}}^2} + {\rm{w}} - 1 = 0\)

Từ đó suy ra \(2\cos {{2\pi } \over 5} = {{ - 1 + \sqrt 5 } \over 2}\) (còn \(2\cos {{4\pi } \over 5} = {{ - 1 - \sqrt 5 } \over 2}\)) để ý rằng \(\cos {{2\pi } \over 5} > 0,\cos {{4\pi } \over 5} < 0\) (h.4.14)

             

                               

Xemloigiai.com

Xem thêm lời giải SBT Toán lớp 12 Nâng cao

Giải sách bài tập toán hình học và giải tích lớp 12. Giải chi tiết tất cả câu hỏi trong các chương và bài chi tiết trong SBT hình học và đại số toán 12 nâng cao với cách giải nhanh và ngắn gọn nhất

GIẢI TÍCH SBT 12 NÂNG CAO

HÌNH HỌC SBT 12 NÂNG CAO

CHƯƠNG 1: ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ HÀM SỐ

CHƯƠNG II: HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT

CHƯƠNG III: NGUYÊN HÀM, PHÂN TÍCH VÀ ỨNG DỤNG

CHƯƠNG IV: SỐ PHỨC

CHƯƠNG 1: KHỐI ĐA DIỆN VÀ THỂ TÍCH CỦA CHÚNG

CHƯƠNG 2: MẶT CẦU, MẶT TRỤ, MẶT NÓN

CHƯƠNG III: PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN

Lớp 12 | Các môn học Lớp 12 | Giải bài tập, đề kiểm tra, đề thi Lớp 12 chọn lọc

Danh sách các môn học Lớp 12 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.