Câu 58, 59, 60, 61, 62, 63 trang 222, 223 SGK Đại số và Giải tích 11 Nâng cao
Bài làm:
Câu 58
Mỗi khẳng định sau đây đúng hay sai ?
a. Hàm số y = cotx có đạo hàm tại mọi điểm mà nó xác định
b. Hàm số \(y = \sqrt x \) có đạo hàm tại mọi điểm mà nó xác định
c. Hàm số y = |x| có đạo hàm tại mọi điểm mà nó xác định.
Lời giải chi tiết:
a. Đúng
b. Sai (vì hàm số \(t = \sqrt x \) không có đạo hàm tại x = 0)
c. Sai (vì hàm số \(y = \left| x \right|\) không có đạo hàm tại x = 0)
Câu 59
Tiếp tuyến của đồ thị hàm số \(y = {4 \over {x - 1}}\) tại điểm với hoành độ x = -1 có phương trình là
A. \(y = -x – 3\)
B. \(y = -x + 2\)
C. \(y = x – 1\)
D. \(y = x + 2\)
Lời giải chi tiết:
Ta có:
\(\eqalign{ & y\left( { - 1} \right) = - 2 \cr & y' = - {4 \over {{{\left( {x - 1} \right)}^2}}} < 0;\forall x \ne 1 \cr} \)
\(y'(-1)=-1\)
Tiếp tuyến cần tìm là: \(y=-1.(x+1)-2\Rightarrow y=-x-3\)
Chọn A
Câu 60
Tiếp tuyến của đồ thị hàm số \(y = {1 \over {\sqrt {2x} }}\) tại điểm với hoành độ \(x = {1 \over 2}\) có phương trình là :
A. \(2x – 2y = -1\)
B. \(2x – 2y = 1\)
C. \(2x + 2y = 3\)
D. \(2x + 2y = -3\)
Lời giải chi tiết:
\(\eqalign{ & y' = {{ - 1} \over {2x\sqrt {2x} }} \cr & y\left( {{1 \over 2}} \right) = 1 \cr & y'\left( {{1 \over 2}} \right) = - 1 \cr} \)
Phương trình tiếp tuyến : \(y - 1 = - 1\left( {x - {1 \over 2}} \right) \Leftrightarrow y = - x + {3 \over 2}\)
Chọn C
Câu 61
Hàm số có đạo hàm bằng \(2x + {1 \over {{x^2}}}\) là :
A. \(y = {{{x^3} + 1} \over x}\)
B. \(y = {{{x^3} + 5x - 1} \over x}\)
C. \(y = {{3\left( {{x^2} + x} \right)} \over {{x^3}}}\)
D. \(y = {{2{x^2} + x - 1} \over x}\)
Lời giải chi tiết:
Ta có: \(y = {{{x^3} + 5x - 1} \over x} = {x^2} - {1 \over x} + 5 \)
\(\Rightarrow y' = 2x + {1 \over {{x^2}}}\)
Chọn B
Câu 62
Đạo hàm cấp 2010 của hàm số y = cosx là :
A. sinx
B. –sinx
C. cosx
D. –cosx
Lời giải chi tiết:
\(\eqalign{ & {\left( {\cos x} \right)^{\left( {4m} \right)}} = {\mathop{\rm cosx}\nolimits} \cr & {\left( {\cos x} \right)^{\left( {4n + 2} \right)}} = - \cos x \cr} \)
Mà \(2010 = 4.502 + 2\) nên chọn D
Câu 63
Điền nội dung thích hợp vào chỗ trống.
a. Hàm số hợp của hàm số y = cotu và hàm số trung gian \(u = \sqrt x \) là y = …………….
b. Hàm số hợp của hàm số \(y = {u^n}\) và hàm số trung gian u = cosx + sinx là y = ………….
c. Hàm số y = tan3x là hàm số hợp của hàm số y = ………….. và hàm số trung gian u = ………….
d. Hàm số \(y = \sqrt {\cos x} \) là hàm số hợp của hàm số y = ………….. và hàm số trung gian u = ………….
Lời giải chi tiết:
a. \(\cot \sqrt x \)
b. \({\left( {\sin x + \cos x} \right)^n}\)
c. \(\tan u\,\text{ và }\,3x\)
d. \(\sqrt u \,\text{ và }\,\cos x\)
Xemloigiai.com
Xem thêm Bài tập & Lời giải
Trong bài: Bài tập trắc nghiệm khách quan - Chương V. Đạo hàm - Toán 11 Nâng cao
Xem thêm lời giải SGK Toán 11 Nâng cao
ĐẠI SỐ VÀ GIẢI TÍCH 11 NÂNG CAO
- 👉 CHƯƠNG I. HÀM SỐ LƯỢNG GIÁC VÀ PHƯƠNG TRÌNH LƯỢNG GIÁC
- 👉 CHƯƠNG II. TỔ HỢP VÀ XÁC SUẤT
- 👉 CHƯƠNG III: DÃY SỐ. CẤP SỐ CỘNG VÀ CẤP SỐ NHÂN
- 👉 CHƯƠNG IV. GIỚI HẠN
- 👉 CHƯƠNG V. ĐẠO HÀM
- 👉 ÔN TẬP CUỐI NĂM ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11 NÂNG CAO
HÌNH HỌC 11 NÂNG CAO
Lớp 11 | Các môn học Lớp 11 | Giải bài tập, đề kiểm tra, đề thi Lớp 11 chọn lọc
Danh sách các môn học Lớp 11 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.
Toán Học
- Đề thi, đề kiểm tra Toán lớp 11
- SBT Toán lớp 11 Nâng cao
- SBT Toán 11 Nâng cao
- SGK Toán 11 Nâng cao
- SBT Toán lớp 11
- SGK Toán lớp 11
Vật Lý
- SBT Vật lí 11 Nâng cao
- SGK Vật lí lớp 11 Nâng cao
- SBT Vật lí lớp 11
- SGK Vật lí lớp 11
- Giải môn Vật lí lớp 11
Hóa Học
- Đề thi, đề kiểm tra Hóa lớp 11
- SBT Hóa học 11 Nâng cao
- SGK Hóa học lớp 11 Nâng cao
- SBT Hóa lớp 11
- SGK Hóa lớp 11
Ngữ Văn
Lịch Sử
Địa Lý
Sinh Học
- Đề thi, đề kiểm tra Sinh lớp 11
- SGK Sinh lớp 11 Nâng cao
- SBT Sinh lớp 11
- SGK Sinh lớp 11
- Giải môn Sinh học lớp 11
GDCD
Tin Học
Tiếng Anh
- Đề thi, đề kiểm tra Tiếng Anh 11 mới
- SBT Tiếng Anh lớp 11
- SGK Tiếng Anh lớp 11
- SBT Tiếng Anh lớp 11 mới
- SGK Tiếng Anh lớp 11 Mới