Câu 83 trang 130 Sách bài tập Hình học 11 Nâng cao

Giải bài tập Câu 83 trang 130 Sách bài tập Hình học 11 Nâng cao

Bài làm:

Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Gọi I là điểm thuộc AB; đặt \(AI = x\left( {0 < x < a} \right)\).

a) Khi góc giữa hai đường thẳng AC’ và DI bằng 60°, hãy xác định vj trí của điểm I.

b) Tính theo a và x diện tích thiết diện của hình lập phương khi cắt bởi mặt phẳng (B’DI). Tìm x để diện tích ấy là nhỏ nhấ.

c) Tính khoảng cách từ đến mặt phẳng (B’DI) theo a và x.

Trả lời

 

a) Cách 1.

Đặt α là góc giữa DI và AC’ thì

\(\eqalign{  & \cos \alpha  = {{\left| {\overrightarrow {DI} .\overrightarrow {AC'} } \right|} \over {\left| {\overrightarrow {DI} } \right|.\left| {\overrightarrow {AC'} } \right|}}  \cr  &  = {{\left( {\overrightarrow {DA}  + \overrightarrow {AI} } \right)\left( {\overrightarrow {AD}  + \overrightarrow {AB}  + \overrightarrow {AA'} } \right)} \over {\left| {\overrightarrow {DI} } \right|.\left| {\overrightarrow {AC'} } \right|}}  \cr  &  = {{\left| { - {a^2} + xa} \right|} \over {\sqrt {{a^2} + {x^2}.a\sqrt 3 } }} = {{\left| { - a + x} \right|} \over {\sqrt 3 .\sqrt {{a^2} + {x^2}} }} \cr} \)

Khi ấy \(\alpha  = {60^0}\) khi và chỉ khi

\(\eqalign{  & {{\left| { - a + x} \right|} \over {\sqrt 3 .\sqrt {{a^2} + {x^2}} }} = {1 \over 2}  \cr  &  \Leftrightarrow {x^2} - 8ax + {a^2} = 0  \cr  &  \Leftrightarrow x = a\left( {4 - \sqrt {15} } \right)\,\,\,\left( {vì\,\,0 < x < a} \right) \cr} \)

Hệ thức trên xác định vị trí điểm I.

Cách 2.

Kẻ \(II'//AA'\left( {I' \in A'B'} \right),C'J//D'I'\) (I’ thuộc đường thẳng A’B’) thì \(\widehat {AC'J}\) hoặc \({180^0} - \widehat {AC'J}\) là góc giữa hai đường thẳng AC’ và DI với B’J = x.

Do giả thiết góc giữa hai đường thẳng AC’ và DI bằng 60° nên \(\widehat {AC'J} = {60^0}\) hoặc 120°.

Ta có :

\(\eqalign{  & A{J^2} = AA{'^2} + A'{J^2} = {a^2} + {\left( {a + x} \right)^2}  \cr  & AC{'^2} = 3{a^2},C'{J^2} = {a^2} + {x^2} \cr} \)

- Trường hơp \(\widehat {AC'J} = {60^0}\), ta có

\(A{J^2} = AC{'^2} + C'{J^2} - 2AC'.C'J.{1 \over 2}\)

hay

\(\eqalign{& {a^2} + {\left( {a + x} \right)^2} \cr & = 3{a^2} + {a^2} + {x^2} - 2a\sqrt 3 .\sqrt {{a^2} + {x^2}.{1 \over 2}} \cr & \Leftrightarrow {x^2} - 8ax + {a^2} = 0 \cr & \Rightarrow x = \left( {4 - \sqrt {15} } \right)a\,\,\left( {vì\,0 < x < a} \right) \cr}\)

Trường hợp \(\widehat {AC'J} = {120^0}\), ta có

\(\eqalign{& {a^2} + {\left( {a + x} \right)^2} \cr & = 3{{\rm{a}}^2} + {a^2} + {x^2} + 2{\rm{a}}\sqrt 3 .\sqrt {{a^2} + {x^2}} .{1 \over 2} \cr & \Leftrightarrow 2ax = 2{a^2} + a\sqrt 3 .\sqrt {{a^2} + {x^2}} \cr & \Leftrightarrow 2\left( {x - a} \right) = \sqrt 3 .\sqrt {{a^2} + {x^2}} \cr} \)

Điều này không xảy ra vì 0 < x < a.

Vậy khi \(x = \left( {4 - \sqrt {15} } \right)a\) thì góc giữa DI và AC’ bằng 60°.

b) Gọi

\(\eqalign{  & E = DI \cap CB  \cr  & F = B'E \cap CC'  \cr  & K = DF \cap D'C' \cr} \)

thì thiết diện của hình lập phương khi cắt bởi mp(B’DI) là tứ giác DIB’K.

Dễ thấy đó là hình bình hành

\({S_{DIB'K}} = 2{{\rm{S}}_{B'I{\rm{D}}}}\)

\(= 2.{1 \over 2}\sqrt {{{\overrightarrow {IB'} }^2}.{{\overrightarrow {I{\rm{D}}} }^2} - {{\left( {\overrightarrow {IB'} .\overrightarrow {I{\rm{D}}} } \right)}^2}} \)

Mặt khác \({\overrightarrow {I{\rm{D}}} ^2}.{\overrightarrow {IB'} ^2} = \left( {{a^2} + {x^2}} \right)\left[ {{a^2} + {{\left( {a - x} \right)}^2}} \right]\)

và \(\eqalign{  & {\left( {\overrightarrow {I{\rm{D}}} .\overrightarrow {IB'} } \right)^2} = {\left[ {\left( {\overrightarrow {IA}  + \overrightarrow {A{\rm{D}}} } \right)\left( {\overrightarrow {IB}  + \overrightarrow {BB'} } \right)} \right]^2}  \cr  &  = {\left( {\overrightarrow {IA} .\overrightarrow {IB} } \right)^2} = {\left[ { - x{{\left( {a - x} \right)}^2}} \right]^2} = {x^2}{\left( {a - x} \right)^2} \cr} \)

Từ đó

\(\eqalign{  & {S_{DIB'K}} = \sqrt {{a^4} + {a^2}{x^2} + {a^2}{{\left( {a - x} \right)}^2}}   \cr  &  = a\sqrt {{a^2} + {x^2} + {{\left( {a - x} \right)}^2}}  \cr} \)

Dễ thấy \({S_{DIB'K}}\) đạt giá trị nhỏ nhất khi \(x = {a \over 2}\) .

c) Gọi khoảng cách từ C đến mp(B’ID), do tứ diện CDEF có CD, CE , CF đôi một vuông góc nên

\({1 \over {{h^2}}} = {1 \over {C{{\rm{D}}^2}}} + {1 \over {C{E^2}}} + {1 \over {C{F^2}}}\).

Mặt khác do AD // BE nên \({a \over {BE}} = {x \over {a - x}}\).

từ đó \(BE = {{a\left( {a - x} \right)} \over x}\)

và \(CE = a + {{a\left( {a - x} \right)} \over x} = {{{a^2}} \over x}\).

Tương tự như trên, ta có \(C'F = {{ax} \over {a - x}}\) từ đó

\(CF = a + {{ax} \over {a - x}} = {{{a^2}} \over {a - x}}\).

Như vậy \({1 \over {{h^2}}} = {1 \over {{a^2}}} + {{{x^2}} \over {{a^4}}} + {{{{\left( {a - x} \right)}^2}} \over {{a^4}}}\)

do vậy \(h = {{{a^2}} \over {\sqrt {{a^2} + {x^2} + {{\left( {a - x} \right)}^2}} }}\)

Xemloigiai.com

Xem thêm lời giải SBT Toán 11 Nâng cao

Lời giải chi tiết, đáp án bài tập SBT Đại số và Giải tích, Hình học 11 Nâng cao. Tất cả lý thuyết, bài tập vận dụng, thực hành Toán 11 Nâng cao

PHẦN ĐẠI SỐ VÀ GIẢI TÍCH 11 NÂNG CAO

PHẦN HÌNH HỌC 11 NÂNG CAO

CHƯƠNG I: HÀM SỐ LƯỢNG GIÁC VÀ PHƯƠNG TRÌNH LƯỢNG GIÁC

CHƯƠNG II: TỔ HỢP VÀ XÁC SUẤT

CHƯƠNG III: DÃY SỐ, CẤP SỐ CỘNG VÀ CẤP SỐ NHÂN

CHƯƠNG IV: GIỚI HẠN

CHƯƠNG V: ĐẠO HÀM

CHƯƠNG I: PHÉP DỜI HÌNH VÀ PHÉP ĐỒNG DẠNG

CHƯƠNG II: ĐƯỜNG THẲNG VÀ MẶT PHẲNG TRONG KHÔNG GIAN. QUAN HỆ SONG SONG

CHƯƠNG III. VECTƠ KHÔNG GIAN. QUAN HỆ VUÔNG GÓC

Lớp 11 | Các môn học Lớp 11 | Giải bài tập, đề kiểm tra, đề thi Lớp 11 chọn lọc

Danh sách các môn học Lớp 11 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.