Đề kiểm tra 15 phút - Đề số 2 - Chương I - Hình học 12
Đề bài
Câu 1: Hình chóp S.ABC có đáy là tam giác vuông tại A, cạnh AB = a, BC = 2a, chiều cao \(SA = a\sqrt 6 \). Thể tích của khối chóp là:
\(A.\,\,V = \dfrac{{{a^3}\sqrt 3 }}{2}\) \(B.\,\,V = \dfrac{{{a^3}\sqrt 6 }}{3}\)
\(C.\,\,V = \dfrac{{{a^3}\sqrt 2 }}{2}\) \(D.\,\,V = 2{a^3}\sqrt 6 \)
Câu 2: Cho hình chóp S. ABCD có đáy ABCD là hình chứ nhật có AB = a, AC = 5a. Hai mặt bên (SAB) và (SAD) cùng vuông góc với đáy, cạnh bên SB tạo với đáy một góc bằng 60o. Tính theo a thể tích của khối chóp S.ABCD.
\(A.\,\,2\sqrt 2 {a^3}\) \(B.\,4\sqrt 2 {a^3}\)
\(C.\,\,6\sqrt 2 {a^3}\) \(D.\,\,2{a^3}\)
Câu 3: Cho khối chóp S.ABC có đáy ABC là tam giác đều cạnh 2a. Cạnh bên SC vuông góc với mặt phẳng đáy và SC = a. Thể tích V của khối chóp S.ABC là:
\(A.\,\,V = 2{a^3}\sqrt 3 \) \(B.\,\,V = \dfrac{{{a^3}\sqrt 3 }}{4}\)
\(C.\,\,V = \dfrac{{{a^3}\sqrt 3 }}{3}\) \(D.\,\,V = {a^3}\sqrt 3 \)
Câu 4: Hình hộp đứng ABCD.A’B’C’D’ có đáy là một hình thôi có góc nhọn bằng \(\alpha \), cạnh a. Diện tích xung quanh của hình hộp đó bằng S. Tính thể tích của khối hộp ABCD.A’B’C’D’
\(A.\dfrac{1}{4}a.S.\sin \alpha \) \(B.\,\,\dfrac{1}{2}a.S.\sin \alpha \)
\(C.\,\,\dfrac{1}{8}a.S.\sin \alpha \) \(D.\,\,\dfrac{1}{6}a.S.\sin \alpha \)
Câu 5: Cho hình chóp S.ABCD, đáy ABCD là hình vuông cạnh a, \(SA = SB = SC = SD = a\sqrt 2 \). Tính thể tích khối chóp S.ABCD.
\(A.\,\dfrac{{{a^3}\sqrt 3 }}{3}\) \(B.\,\dfrac{{{a^3}\sqrt 6 }}{9}\)
\(C.\,\dfrac{{{a^3}\sqrt 6 }}{6}\) \(D.\,\dfrac{{{a^3}\sqrt 6 }}{{12}}\)
Câu 6: Cho hình chóp S.ABC có ABC là tam giác đều cạnh a và SA vuông góc với đáy. Góc tạo bởi mặt phẳng (SBC) và mặt phẳng (ABC) bằng 30o. Thể tích của khối chóp S.ABC là:
\(A.\,\,\dfrac{{{a^3}\sqrt 3 }}{8}\) \(B.\,\,\dfrac{{{a^3}\sqrt 3 }}{{24}}\)
\(C.\,\,\dfrac{{{a^3}}}{4}\) \(D.\,\,\dfrac{{{a^3}}}{{12}}\)
Câu 7: Hình đa diện nào sau đây có tâm đối xứng?
A. Hình tứ diện đều
B. Hình chóp tứ giác đều
C. Hình lăng trụ tam giác
D. Hình hộp
Lời giải chi tiết
1 |
2 |
3 |
4 |
5 |
6 |
7 |
C |
A |
C |
A |
C |
B |
D |
Câu 1.
Áp dụng định lý Py – ta- go ta có:
\(AC = \sqrt {B{C^2} - A{B^2}} \)
\(\;\;\;\;\;\;\;= \sqrt {4{a^2} - {a^2}} = a\sqrt 3 \)
\( \Rightarrow {S_{ABC}} = \dfrac{1}{2}AB.AC = \dfrac{1}{2}a.a\sqrt 3 \)\(\, = \dfrac{{{a^2}\sqrt 3 }}{2}\)
Khi đó:
\({V_{S.ABC}} = \dfrac{1}{3}SA.{S_{ABC}} = \dfrac{1}{3}a\sqrt 6 .\dfrac{{{a^2}\sqrt 3 }}{2} \)\(\,= \dfrac{{{a^3}\sqrt 2 }}{2}\)
Chọn đáp án C.
Câu 2.
Theo giả thiết ta có mặt bên (SAB) và (SAD) cùng vuông góc với đáy.
\( \Rightarrow SA \bot \left( {ABCD} \right)\)
+ Mà \(\tan {60^0} = \dfrac{{SA}}{{AB}} = \dfrac{{SA}}{a} \Rightarrow SA = a\sqrt 3 \)
+ \(BC = \sqrt {A{C^2} - A{B^2}} \)\(\,= \sqrt {25a{}^2 - {a^2}} = 2a\sqrt 6 \)
Khi đó ta có:
\({V_{S.ABCD}} = \dfrac{1}{3}.SA.{S_{ABCD}} \)\(\,= \dfrac{1}{3}.a\sqrt 3 .2a\sqrt 6 .a = 2{a^3}\sqrt 2 \)
Chọn đáp án A.
Câu 3.
Ta có: \({S_{ABC}} = \dfrac{1}{2}.a\sqrt 3 .2a = {a^2}\sqrt 3 \)
Khi đó \({V_{S.ABC}} = \dfrac{1}{3}.SC.{S_{ABC}} \)\(\,= \dfrac{1}{3}.{a^2}\sqrt 3 .a = \dfrac{{{a^3}\sqrt 3 }}{3}\)
Chọn đáp án C.
Câu 4.
Ta có:
\({S_{xq}} = 2\left( {DD'.D'A' + DD'.D'C'} \right)\)\(\, = 2DD'\left( {2a} \right) = S\)
\( \Rightarrow DD' = \dfrac{S}{{4a}}\)
Diện tích đáy bằng:
\({S_d} = 2.\dfrac{1}{2}a.a.\sin \alpha = {a^2}\sin \alpha \)
Khi đó \({V_{ABCD.A'B'C'D'}} = DD'.{S_d} \)\(\,= \dfrac{S}{{4a}}.{a^2}\sin \alpha = \dfrac{1}{4}.Sa\sin \alpha \)
Chọn đáp án A.
Câu 5.
Ta có:
\(OA = OB = OC = OD = \dfrac{{AC}}{2} \)\(\,= \dfrac{{a\sqrt 2 }}{2}\)
\( \Rightarrow SO = \sqrt {S{A^2} - OA{}^2} \)\(\, = \sqrt {2{a^2} - \dfrac{{{a^2}}}{2}} = \dfrac{{a\sqrt 6 }}{2}\)
Khi đó:
\(V = \dfrac{1}{3}SO.{S_{ABCD}} = \dfrac{1}{3}.\dfrac{{a\sqrt 6 }}{2}.{a^2}\)\(\, = \dfrac{{{a^3}\sqrt 6 }}{6}\)
Chọn đáp án C.
Câu 6.
Giải:
Gọi H là trung điểm của BC.
Ta có: \(AH = \sqrt {A{C^2} - H{C^2}} = \sqrt {{a^2} - \dfrac{{{a^2}}}{4}} \)\(\,= \dfrac{{a\sqrt 3 }}{2}\)
+ \(\tan {30^0} = \dfrac{{SA}}{{AH}}\)
\(\Rightarrow SA = \dfrac{{\sqrt 3 }}{3}.\dfrac{{a\sqrt 3 }}{2} = \dfrac{a}{2}\)
Vậy\(V = \dfrac{1}{3}SA.{S_{ABC}} = \dfrac{1}{3}.\dfrac{a}{2}.\dfrac{1}{2}.\dfrac{{a\sqrt 3 }}{2}.a\)\(\, = \dfrac{{{a^3}\sqrt 3 }}{{24}}\)
Chọn đáp án B
Câu 7.
Hình hộp là đa diện có tâm đối xứng.
Chọn đáp án D.
Xemloigiai.com
Xem thêm Bài tập & Lời giải
Trong bài: Đề kiểm tra 15 phút - Chương I - Hình học 12
Xem thêm lời giải Đề thi, đề kiểm tra Toán lớp 12
Dưới đây là danh sách Đề thi, đề kiểm tra Toán lớp 12 chọn lọc, có đáp án, cực sát đề chính thức theo nội dung sách giáo khoa Lớp 12.
Đề thi giữa học kì 1 Toán 12
- 👉 Đề ôn tập giữa học kì 1 – Có đáp án và lời giải
- 👉 Đề thi giữa học kì 1 của các trường có lời giải – Mới nhất
Đề thi học kì 1 Toán 12
- 👉 Đề cương học kì I
- 👉 Đề thi học kì 1 mới nhất có lời giải
- 👉 Đề ôn tập học kì 1 – Có đáp án và lời giải
- 👉 Đề thi học kì 1 của các trường có lời giải – Mới nhất
Đề thi giữa học kì 2 Toán 12
Đề thi học kì 2 Toán 12
- 👉 Đề cương học kì II
- 👉 Đề ôn tập học kì 2 – Có đáp án và lời giải
- 👉 Đề thi học kì 2 của các trường có lời giải – Mới nhất
Đề kiểm tra 15 phút Toán 12
- 👉 Đề kiểm tra 15 phút - Chương I - Giải Tích 12
- 👉 Đề kiểm tra 15 phút - Chương II - Giải Tích 12
- 👉 Đề kiểm tra 15 phút - Chương III - Giải Tích 12
- 👉 Đề kiểm tra 15 phút – Chương IV – Giải tích 12
- 👉 Đề kiểm tra 15 phút - Chương I - Hình học 12
- 👉 Đề kiểm tra 15 phút - Chương II - Hình học 12
- 👉 Đề kiểm tra 15 phút - Chương III - Hình học 12
Đề kiểm tra 1 tiết Toán 12
- 👉 Đề kiểm tra 45 phút (1 tiết) - Chương I - Giải Tích 12
- 👉 Đề kiểm tra 45 phút (1 tiết) - Chương II - Giải Tích 12
- 👉 Đề kiểm tra 45 phút (1 tiết) - Chương III - Giải Tích 12
- 👉 Đề kiểm tra 45 phút (1 tiết) - Chương IV - Giải Tích 12
- 👉 Đề kiểm tra 45 phút (1 tiết) - Chương I - Hình học 12
- 👉 Đề kiểm tra 45 phút (1 tiết) - Chương II - Hình học 12
- 👉 Đề kiểm tra 45 phút (1 tiết) - Chương III - Hình học 12
Xem Thêm
Lớp 12 | Các môn học Lớp 12 | Giải bài tập, đề kiểm tra, đề thi Lớp 12 chọn lọc
Danh sách các môn học Lớp 12 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.
Toán Học
- Đề thi, đề kiểm tra Toán lớp 12
- SBT Toán lớp 12 Nâng cao
- SBT Toán 12 Nâng cao
- SGK Toán 12 Nâng cao
- SBT Toán lớp 12
- SGK Toán lớp 12
Vật Lý
- SBT Vật lí 12 Nâng cao
- SGK Vật lí lớp 12 Nâng cao
- SBT Vật lí lớp 12
- SGK Vật lí lớp 12
- Giải môn Vật lí lớp 12
Hóa Học
- Đề thi, đề kiểm tra Hóa lớp 12
- SBT Hóa học 12 Nâng cao
- SGK Hóa học lớp 12 Nâng cao
- SBT Hóa lớp 12
- SGK Hóa lớp 12
Ngữ Văn
- Đề thi, đề kiểm tra Ngữ Văn 12 mới
- Soạn văn 12
- SBT Ngữ văn lớp 12
- Luyện dạng đọc hiểu
- Văn mẫu 12
- Soạn văn 12 chi tiết
- Soạn văn ngắn gọn lớp 12
- Soạn văn 12 siêu ngắn
- Bài soạn văn lớp 12 siêu ngắn
- Bài soạn văn 12
Lịch Sử
Địa Lý
Sinh Học
- Đề thi, đề kiểm tra Sinh lớp 12
- SGK Sinh lớp 12 Nâng cao
- SBT Sinh lớp 12
- SGK Sinh lớp 12
- Giải môn Sinh học lớp 12
GDCD
Tin Học
Tiếng Anh
- Đề thi, đề kiểm tra Tiếng Anh 12 mới
- SBT Tiếng Anh lớp 12
- Ngữ pháp Tiếng Anh
- SGK Tiếng Anh 12
- SBT Tiếng Anh lớp 12 mới
- SGK Tiếng Anh 12 Mới