Đề kiểm tra 15 phút - Đề số 2 - Chương I - Hình học 12

Đáp án và lời giải chi tiết Đề kiểm tra 15 phút - Đề số 2 - Chương I - Hình học 12

Đề bài

Câu 1: Hình chóp S.ABC có đáy là tam giác vuông tại A, cạnh AB = a, BC = 2a, chiều cao \(SA = a\sqrt 6 \). Thể tích của khối chóp là:

\(A.\,\,V = \dfrac{{{a^3}\sqrt 3 }}{2}\)      \(B.\,\,V = \dfrac{{{a^3}\sqrt 6 }}{3}\)

\(C.\,\,V = \dfrac{{{a^3}\sqrt 2 }}{2}\)      \(D.\,\,V = 2{a^3}\sqrt 6 \)

Câu 2: Cho hình chóp S. ABCD có đáy ABCD là hình chứ nhật có AB = a, AC = 5a. Hai mặt bên (SAB) và (SAD) cùng vuông góc với đáy, cạnh bên SB tạo với đáy một góc bằng 60o. Tính theo a thể tích của khối chóp S.ABCD.

\(A.\,\,2\sqrt 2 {a^3}\)                \(B.\,4\sqrt 2 {a^3}\)

\(C.\,\,6\sqrt 2 {a^3}\)                \(D.\,\,2{a^3}\)

Câu 3: Cho khối chóp S.ABC có đáy ABC là tam giác đều cạnh 2a. Cạnh bên SC vuông góc với mặt phẳng đáy và SC = a. Thể tích V của khối chóp S.ABC là:

\(A.\,\,V = 2{a^3}\sqrt 3 \)            \(B.\,\,V = \dfrac{{{a^3}\sqrt 3 }}{4}\)

\(C.\,\,V = \dfrac{{{a^3}\sqrt 3 }}{3}\)              \(D.\,\,V = {a^3}\sqrt 3 \)

Câu 4: Hình hộp đứng ABCD.A’B’C’D’ có đáy là một hình thôi có góc nhọn bằng \(\alpha \), cạnh a. Diện tích xung quanh của hình hộp đó bằng S. Tính thể tích của khối hộp ABCD.A’B’C’D’

\(A.\dfrac{1}{4}a.S.\sin \alpha \)     \(B.\,\,\dfrac{1}{2}a.S.\sin \alpha \)

\(C.\,\,\dfrac{1}{8}a.S.\sin \alpha \)   \(D.\,\,\dfrac{1}{6}a.S.\sin \alpha \)

Câu 5: Cho hình chóp S.ABCD, đáy ABCD là hình vuông cạnh a, \(SA = SB = SC = SD = a\sqrt 2 \). Tính thể tích khối chóp S.ABCD.

\(A.\,\dfrac{{{a^3}\sqrt 3 }}{3}\)          \(B.\,\dfrac{{{a^3}\sqrt 6 }}{9}\)

\(C.\,\dfrac{{{a^3}\sqrt 6 }}{6}\)           \(D.\,\dfrac{{{a^3}\sqrt 6 }}{{12}}\)

Câu 6: Cho hình chóp S.ABC có ABC là tam giác đều cạnh a và SA vuông góc với đáy. Góc tạo bởi mặt phẳng (SBC) và mặt phẳng (ABC) bằng 30o. Thể tích của khối chóp S.ABC là:

\(A.\,\,\dfrac{{{a^3}\sqrt 3 }}{8}\)     \(B.\,\,\dfrac{{{a^3}\sqrt 3 }}{{24}}\)

\(C.\,\,\dfrac{{{a^3}}}{4}\)             \(D.\,\,\dfrac{{{a^3}}}{{12}}\)

Câu 7: Hình đa diện nào sau đây có tâm đối xứng?

A. Hình tứ diện đều

B. Hình chóp tứ giác đều

C. Hình lăng trụ tam giác

D. Hình hộp

Lời giải chi tiết

1

2

3

4

5

6

7

C

A

C

A

C

B

D

Câu 1.

Áp dụng định lý Py – ta- go ta có:

\(AC = \sqrt {B{C^2} - A{B^2}}  \)

\(\;\;\;\;\;\;\;= \sqrt {4{a^2} - {a^2}}  = a\sqrt 3 \)

\( \Rightarrow {S_{ABC}} = \dfrac{1}{2}AB.AC = \dfrac{1}{2}a.a\sqrt 3 \)\(\, = \dfrac{{{a^2}\sqrt 3 }}{2}\)

Khi đó:

\({V_{S.ABC}} = \dfrac{1}{3}SA.{S_{ABC}} = \dfrac{1}{3}a\sqrt 6 .\dfrac{{{a^2}\sqrt 3 }}{2} \)\(\,= \dfrac{{{a^3}\sqrt 2 }}{2}\)

Chọn đáp án C.

Câu 2.

Theo giả thiết ta có mặt bên (SAB) và (SAD) cùng vuông góc với đáy.

\( \Rightarrow SA \bot \left( {ABCD} \right)\)

+ Mà \(\tan {60^0} = \dfrac{{SA}}{{AB}} = \dfrac{{SA}}{a} \Rightarrow SA = a\sqrt 3 \)

+ \(BC = \sqrt {A{C^2} - A{B^2}}  \)\(\,= \sqrt {25a{}^2 - {a^2}}  = 2a\sqrt 6 \)

Khi đó ta có:

\({V_{S.ABCD}} = \dfrac{1}{3}.SA.{S_{ABCD}} \)\(\,= \dfrac{1}{3}.a\sqrt 3 .2a\sqrt 6 .a = 2{a^3}\sqrt 2 \)

Chọn đáp án A.

Câu 3.

Ta có: \({S_{ABC}} = \dfrac{1}{2}.a\sqrt 3 .2a = {a^2}\sqrt 3 \)

Khi đó \({V_{S.ABC}} = \dfrac{1}{3}.SC.{S_{ABC}} \)\(\,= \dfrac{1}{3}.{a^2}\sqrt 3 .a = \dfrac{{{a^3}\sqrt 3 }}{3}\)

Chọn đáp án C.

Câu 4.

Ta có:

\({S_{xq}} = 2\left( {DD'.D'A' + DD'.D'C'} \right)\)\(\, = 2DD'\left( {2a} \right) = S\)

\( \Rightarrow DD' = \dfrac{S}{{4a}}\)

Diện tích đáy bằng:

\({S_d} = 2.\dfrac{1}{2}a.a.\sin \alpha  = {a^2}\sin \alpha \)

Khi đó \({V_{ABCD.A'B'C'D'}} = DD'.{S_d} \)\(\,= \dfrac{S}{{4a}}.{a^2}\sin \alpha  = \dfrac{1}{4}.Sa\sin \alpha \)

Chọn đáp án A.

Câu 5.

Ta có:

\(OA = OB = OC = OD = \dfrac{{AC}}{2} \)\(\,= \dfrac{{a\sqrt 2 }}{2}\)

\( \Rightarrow SO = \sqrt {S{A^2} - OA{}^2} \)\(\, = \sqrt {2{a^2} - \dfrac{{{a^2}}}{2}}  = \dfrac{{a\sqrt 6 }}{2}\)

Khi đó:

\(V = \dfrac{1}{3}SO.{S_{ABCD}} = \dfrac{1}{3}.\dfrac{{a\sqrt 6 }}{2}.{a^2}\)\(\, = \dfrac{{{a^3}\sqrt 6 }}{6}\)

Chọn đáp án C.

Câu 6.

Giải:

Gọi H là trung điểm của BC.

Ta có: \(AH = \sqrt {A{C^2} - H{C^2}}  = \sqrt {{a^2} - \dfrac{{{a^2}}}{4}}  \)\(\,= \dfrac{{a\sqrt 3 }}{2}\)

+ \(\tan {30^0} = \dfrac{{SA}}{{AH}}\)

\(\Rightarrow SA = \dfrac{{\sqrt 3 }}{3}.\dfrac{{a\sqrt 3 }}{2} = \dfrac{a}{2}\)

Vậy\(V = \dfrac{1}{3}SA.{S_{ABC}} = \dfrac{1}{3}.\dfrac{a}{2}.\dfrac{1}{2}.\dfrac{{a\sqrt 3 }}{2}.a\)\(\, = \dfrac{{{a^3}\sqrt 3 }}{{24}}\)

Chọn đáp án B

Câu 7.

Hình hộp là đa diện có tâm đối xứng.

Chọn đáp án D.

Xemloigiai.com

Xem thêm lời giải Đề thi, đề kiểm tra Toán lớp 12

Dưới đây là danh sách Đề thi, đề kiểm tra Toán lớp 12 chọn lọc, có đáp án, cực sát đề chính thức theo nội dung sách giáo khoa Lớp 12.

Đề thi giữa học kì 1 Toán 12

Đề thi học kì 1 Toán 12

Đề thi giữa học kì 2 Toán 12

Đề thi học kì 2 Toán 12

Đề kiểm tra 15 phút Toán 12

Đề kiểm tra 1 tiết Toán 12

Xem Thêm

Lớp 12 | Các môn học Lớp 12 | Giải bài tập, đề kiểm tra, đề thi Lớp 12 chọn lọc

Danh sách các môn học Lớp 12 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.