Đề kiểm tra 15 phút – Đề số 3 – Chương IV - Giải tích 12

Đáp án và lời giải chi tiết Đề kiểm tra 15 phút – Đề số 3 – Chương IV - Giải tích 12.

Đề bài

Câu 1. Cho số phức z = - 1 + 3i. Phần thực và phần ảo của \(\overline z \) là:

A. – 1 và 3.               

B. – 1 và – 3 .

C. 1 và – 3 .                   

D. – 1 và – 3i .

Câu 2. Số phức z = 1 – 2i có điểm biểu diễn là:

A. M(1 ; 2).                 

B. M(1 ; - 2) .

C. M(- 1; 2).                 

D. M(- 1 ; - 2).

Câu 3. Nghịch đảo của số phức z = 1 + i là ;

A. \(\dfrac{1}{2} + \dfrac{1}{2}i\).          

B. \(\dfrac{1}{2} - \dfrac{1}{2}i\).

C. 1 – i              

D. – 1 + i.

Câu 4. Trong mặt phẳng Oxy cho điểm A biểu diễn số phức  z1 = 1 + 2i, B là điểm thuộc đường thẳng y = 2 sao cho tam giác OAB cân tại  O . Điểm B biểu diễn số phức nào trong các số phức sau đây ?

A. z = - 1 + 2i.  

B. z = 1 – 2i.

C. z = 3 + 3i  

D. z = 3 – 3i.

Câu 5. Cho biểu thức \(B = \left( {2 + 3i} \right)\left( {3 - i} \right) + \left( {2 - 3i} \right)\left( {3 + i} \right)\). Giá trị của B là ;

A. B = 1.                     B. B = 18i.

C. B = 18.                    D. B = 0.

Câu 6. Phương trình bậc hai trên tập số phức có thể có mấy nghiệm ?

A. 1                

B. 2                                

C. 0                

D. Cả A và B đều đúng .

Câu 7. Tìm số thực x , y sao cho \(\left( {1 - 2i} \right)x + \left( {1 + 2i} \right)y = 1 + i\).

A. \(x = \dfrac{1}{4}\,,\,\,y = \dfrac{3}{4}\).

B. \(x = \dfrac{1}{4}\,,\,\,y =  - \dfrac{3}{4}\).

C. \(x =  - \dfrac{1}{4}\,,\,\,y = \dfrac{3}{4}\).       

D. \(x =  - \dfrac{1}{4}\,,\,\,y =  - \dfrac{3}{4}\).

Câu 8. Gọi M và N lần lượt là điểm biểu diễn của các số phức \({z_1},\,{z_2}\) khác 0. Khi đó khẳng định nào sau đây sai ?

 

A. \(|{z_2}| = ON\).    

B. \(|{z_1}| = OM\).

C. \(|{z_1} - {z_2}| = MN\).  

D. \(|{z_1} + {z_2}| = MN\).

Câu 9.Tập điểm biểu diễn số phức z thỏa mãn \(|z{|^2} = {z^2}\) là:

A. Cả mặt phẳng.                                  

B. Đường thẳng 

C. Một điểm.                                      

D. Hai đường thẳng .

Câu 10. Cho số phức \(z = \dfrac{{i - m}}{{1 - m\left( {m - 2i} \right)}}\,\,(m \in R)\). Giá trị của m để |z| lớn nhất là :

A. m = 1.                            B. m = - 1 .

C. m = \(\dfrac{1}{2}\).                          D. m = 0.

 

Lời giải chi tiết

1

2

3

4

5

B

B

B

A

C

6

7

8

9

10

D

A

D

B

D

 Lời giải chi tiết 

Câu 1.

Ta có: \(z =  - 1 + 3i \Rightarrow \overline z  =  - 1 = 3i\)

+ Phần thực là \( - 1\)

+ Phần ảo là \( - 3\)

Chọn đáp án B.

Câu 2.

Điểm biểu diễn của số phức \(z = 1 - 2i\) là \(M\left( {1; - 2} \right)\)

Chọn đáp án B.

Câu 3.

Ta có: \(\dfrac{1}{z} = \dfrac{1}{{1 + i}} = \dfrac{{1 - i}}{{1 - {i^2}}} = \dfrac{{1 - i}}{2} \)\(\,= \dfrac{1}{2} - \dfrac{1}{2}i\)

Chọn đáp án B.

Câu 4.

Điểm \(A\left( {1;2} \right)\) .Gọi \(B\left( {b;2} \right)\)

Ta có: \(\overrightarrow {OA}  = \left( {1;2} \right),\;\overrightarrow {OB}  = \left( {b;2} \right)\)

\(\left\{ \begin{array}{l}\overrightarrow {OA}  = \left( {1;2} \right) \Rightarrow OA = \sqrt 5 \\\overrightarrow {OB}  = \left( {b;2} \right) \Rightarrow OB = \sqrt {{b^2} + 4} \end{array} \right.\\ \Rightarrow \sqrt {{b^2} + 4}  = \sqrt 5  \Leftrightarrow b =  \pm 1.\)

Khi đó \(B\left( { - 1;2} \right) \Rightarrow z =  - 1 + 2i\)

Chọn đáp án A.

Câu 5.

Ta có: \(B = \left( {2 + 3i} \right)\left( {3 - i} \right) + \left( {2 - 3i} \right)\left( {3 + i} \right) \)\(\,= 6 - 2i + 9i + 3 + 6 + 2i - 9i + 3 \)\(\,= 18\)

Chọn đáp án C.

Câu 6.

Phương trình bậc hai trên tập số phức có thể có 1 nghiệm hoặc 2 nghiệm.

Chọn đáp án D.

Câu 7.

Ta có: \(\left( {1 - 2i} \right)x + \left( {1 + 2i} \right)y = 1 + i \)

\(\Leftrightarrow x + y - 1 - \left( {2x - 2y + 1} \right)i = 0\)

\( \Leftrightarrow \left\{ \begin{array}{l}x + y = 1\\2x - 2y =  - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x =   \dfrac{1}{4}\\y =   \dfrac{3}{4}\end{array} \right.\)

Chọn đáp án A.

Câu 8.

Giả sử \(\left\{ \begin{array}{l}{z_1} = a + bi \to \left| {{z_1}} \right| = \sqrt {{a^2} + {b^2}}  = OM\\{z_2} = m + ni \to \left| {{z_2}} \right| = \sqrt {{m^2} + {n^2}}  = ON\end{array} \right. \\ \Rightarrow \left| {{z_1} + {z_2}} \right| = \sqrt {{{\left( {a + m} \right)}^2} + {{\left( {b + n} \right)}^2}} \)

Mà \(MN = \sqrt {{{\left( {b - n} \right)}^2} + {{\left( {a - m} \right)}^2}} \)

Chọn đáp án D.

Câu 9.

Ta có: \(|z{|^2} = {z^2} \Leftrightarrow {a^2} + {b^2} = {\left( {a + bi} \right)^2}\)

\(\Leftrightarrow {a^2} + {b^2} = {a^2} + 2abi - {b^2}\)

\( \Leftrightarrow 2{b^2} = 2abi \Leftrightarrow b = ai\)

Tập điểm biểu diễn số phức z là một đường thẳng

Chọn đáp án B.

Câu 10.

Ta có:

\(z = \dfrac{{i - m}}{{1 - m\left( {m - 2i} \right)}}\)

\(\;\;\;= \dfrac{{i - m}}{{1 - {m^2} + 2mi}} = \dfrac{{i - m}}{{ - {{\left( {i - m} \right)}^2}}} \)

\(\;\;\;= \dfrac{1}{{m - i}} = \dfrac{{m + i}}{{{m^2} + 1}}\)

Khi đó \(\left| z \right| = \sqrt {\dfrac{{{m^2} + 1}}{{{{\left( {{m^2} + 1} \right)}^2}}}}  = \sqrt {\dfrac{1}{{{m^2} + 1}}}  \le 1\)

Dấu bằng xảy ra khi và chỉ khi \(m = 0\)

Chọn đáp án D.

Xemloigiai.com

 

Xem thêm lời giải Đề thi, đề kiểm tra Toán lớp 12

Dưới đây là danh sách Đề thi, đề kiểm tra Toán lớp 12 chọn lọc, có đáp án, cực sát đề chính thức theo nội dung sách giáo khoa Lớp 12.

Đề thi giữa học kì 1 Toán 12

Đề thi học kì 1 Toán 12

Đề thi giữa học kì 2 Toán 12

Đề thi học kì 2 Toán 12

Đề kiểm tra 15 phút Toán 12

Đề kiểm tra 1 tiết Toán 12

Xem Thêm

Lớp 12 | Các môn học Lớp 12 | Giải bài tập, đề kiểm tra, đề thi Lớp 12 chọn lọc

Danh sách các môn học Lớp 12 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.