Đề kiểm tra 15 phút - Đề số 5 - Chương III - Hình học 12
Đề bài
Câu 1: Cho đường thẳng \(d\) có VTCP \(\overrightarrow u \) và mặt phẳng \(\left( P \right)\) có VTPT \(\overrightarrow n \). Nếu \(d//\left( P \right)\) thì:
A. \(\overrightarrow u = k\overrightarrow n \left( {k \ne 0} \right)\) B. \(\overrightarrow n = k\overrightarrow u \)
C. \(\overrightarrow n .\overrightarrow u = 0\) D. \(\overrightarrow n .\overrightarrow u = \overrightarrow 0 \)
Câu 2: Cho đường thẳng \(d\) có VTCP \(\overrightarrow u \) và mặt phẳng \(\left( P \right)\) có VTPT \(\overrightarrow n \). Nếu \(\overrightarrow u \bot \overrightarrow n \) và một điểm thuộc \(d\) cũng thuộc \(\left( P \right)\) thì:
A. \(d//\left( P \right)\) B. \(d \subset \left( P \right)\)
C. \(\left( P \right) \subset d\) D. \(d \bot \left( P \right)\)
Câu 3: Cho đường thẳng \(d:\dfrac{{x - 1}}{2} = \dfrac{{y + 1}}{{ - 2}} = \dfrac{z}{3}\) và mặt phẳng \(\left( P \right):x + y - z - 3 = 0\). Tọa độ giao điểm của \(d\) và \(\left( P \right)\) là:
A. \(\left( { - 1;1; - 3} \right)\) B. \(\left( {1;2;0} \right)\)
C. \(\left( {2; - 2;3} \right)\) D. \(\left( {2; - 2; - 3} \right)\)
Câu 4: Cho \(d,d'\) là các đường thẳng có VTCP lần lượt là \(\overrightarrow u ,\overrightarrow {u'} ,M \in d,M' \in d'\). Khi đó \(d \equiv d'\) nếu:
A. \(\left[ {\overrightarrow u ,\overrightarrow {u'} } \right] = \overrightarrow 0 \)
B. \(\left[ {\overrightarrow u ,\overrightarrow {u'} } \right] = \left[ {\overrightarrow u ,\overrightarrow {MM'} } \right]\)
C. \(\left[ {\overrightarrow u ,\overrightarrow {u'} } \right] = \left[ {\overrightarrow u ,\overrightarrow {MM'} } \right] = \overrightarrow 0 \)
D. \(\left[ {\overrightarrow u ,\overrightarrow {u'} } \right] \ne \left[ {\overrightarrow u ,\overrightarrow {MM'} } \right]\)
Câu 5: Cho \(d,d'\) là các đường thẳng có VTCP lần lượt là \(\overrightarrow u ,\overrightarrow {u'} \). Nếu \(\left[ {\overrightarrow u ,\overrightarrow {u'} } \right] = \overrightarrow 0 \)thì:
A. \(d//d'\) B. \(d \equiv d'\)
C. \(d\) cắt \(d'\) D. A hoặc B đúng
Câu 6: Điều kiện cần và đủ để hai đường thẳng cắt nhau là:
A. \(\left\{ \begin{array}{l}\left[ {\overrightarrow u ,\overrightarrow {u'} } \right] \ne \overrightarrow 0 \\\left[ {\overrightarrow u ,\overrightarrow {u'} } \right]\overrightarrow {MM'} = 0\end{array} \right.\)
B. \(\left[ {\overrightarrow u ,\overrightarrow {u'} } \right] \ne \overrightarrow 0 \)
C. \(\left[ {\overrightarrow u ,\overrightarrow {u'} } \right]\overrightarrow {MM'} = 0\)
D. \(\left[ {\overrightarrow u ,\overrightarrow {u'} } \right] = \overrightarrow 0 \)
Câu 7: Cho \(d,d'\) là các đường thẳng có VTCP lần lượt là \(\overrightarrow u ,\overrightarrow {u'} ,M \in d,M' \in d'\). Nếu \(\left[ {\overrightarrow u ,\overrightarrow {u'} } \right]\overrightarrow {MM'} \ne 0\) thì:
A. \(d//d'\) B. \(d \equiv d'\)
C. \(d\) cắt \(d'\) D. \(d\) chéo \(d'\)
Câu 8: Khi xét hệ phương trình giao hai đường thẳng, nếu hệ có nghiệm duy nhất thì:
A. \(d//d'\) B. \(d \bot d'\)
C. \(d \equiv d'\) D. \(d\) cắt \(d'\)
Câu 9: Khi xét hệ phương trình giao điểm hai đường thẳng, nếu hệ vô nghiệm và hai véc tơ \(\overrightarrow u ,\overrightarrow {u'} \) cùng phương thì hai đường thẳng:
A. cắt nhau B. song song
C. chéo nhau D. trùng nhau
Câu 10: Công thức tính khoảng cách từ điểm \(A\) đến đường thẳng \(d'\) đi qua điểm \(M'\) và có VTCP \(\overrightarrow {u'} \) là:
A. \(d\left( {A,d'} \right) = \frac{{\left| {\left[ {\overrightarrow {AM'} ,\overrightarrow {u'} } \right]} \right|}}{{\left| {\overrightarrow {u'} } \right|}}\)
B. \(d\left( {A,d'} \right) = \frac{{\left| {\left[ {\overrightarrow {AM'} ,\overrightarrow {u'} } \right]} \right|}}{{\overrightarrow {u'} }}\)
C. \(d\left( {A,d'} \right) = \frac{{\left[ {\overrightarrow {AM'} ,\overrightarrow {u'} } \right]}}{{\overrightarrow {u'} }}\)
D. \(d\left( {A,d'} \right) = \frac{{\left| {\overrightarrow {AM'} .\overrightarrow {u'} } \right|}}{{\left| {\overrightarrow {u'} } \right|}}\)
Lời giải chi tiết
Câu |
1 |
2 |
3 |
4 |
5 |
Đáp án |
C |
B |
A |
C |
D |
Câu |
6 |
7 |
8 |
9 |
10 |
Đáp án |
A |
D |
D |
B |
A |
Hướng dẫn giải chi tiết
Câu 1:
Ta có: \(d//\left( P \right) \Leftrightarrow \left\{ \begin{array}{l}\overrightarrow u \bot \overrightarrow n \\M \in d,M \notin \left( P \right)\end{array} \right.\)
Do đó nếu \(d//\left( P \right)\) thì \(\overrightarrow u \bot \overrightarrow n \Leftrightarrow \overrightarrow u .\overrightarrow n = 0\).
Chọn C
Câu 2:
Ta có: \(d \subset \left( P \right) \Leftrightarrow \left\{ \begin{array}{l}\overrightarrow u \bot \overrightarrow n \\M \in d,M \in \left( P \right)\end{array} \right.\).
Do đó nếu \(\overrightarrow u \bot \overrightarrow n \) thì \(d//\left( P \right)\) hoặc \(d \subset \left( P \right)\). Ngoài ra nếu \(M \in d\) và \(M \in \left( P \right)\) thì \(d \subset \left( P \right)\).
Chọn B.
Câu 3:
\(d:\dfrac{{x - 1}}{2} = \dfrac{{y + 1}}{{ - 2}} = \dfrac{z}{3}\)
\(\Rightarrow \left\{ \begin{array}{l}x = 1 + 2t\\y = - 1 - 2t\\z = 3t\end{array} \right.\)
\(\Rightarrow M\left( {1 + 2t; - 1 - 2t;3t} \right)\)
\(M = d \cap \left( P \right) \)
\(\Rightarrow 1 + 2t - 1 - 2t - 3t - 3 = 0\)
\(\Leftrightarrow - 3t - 3 = 0 \)
\(\Leftrightarrow t = - 1\)
\(\Rightarrow M\left( { - 1;1; - 3} \right)\)
Chọn A.
Câu 4:
\(d \equiv d' \Leftrightarrow \overrightarrow u ,\overrightarrow {u'} ,\overrightarrow {MM'} \) đôi một cùng phương \( \Leftrightarrow \left[ {\overrightarrow u ,\overrightarrow {u'} } \right] = \left[ {\overrightarrow u ,\overrightarrow {MM'} } \right] = \overrightarrow 0 \)
Chọn C.
Câu 5:
Ta có:
Nếu \(\left[ {\overrightarrow u ,\overrightarrow {u'} } \right] = \overrightarrow 0 \) thì \(\overrightarrow u \) cùng phương \(\overrightarrow {u'} \) nên \(d//d'\) hoặc \(d \equiv d'\).
Chọn D.
Câu 6:
\(d\) cắt \(d' \Leftrightarrow \overrightarrow u ,\overrightarrow {u'} \) không cùng phương và \(\overrightarrow u ,\overrightarrow {u'} ,\overrightarrow {MM'} \) đồng phẳng \( \Leftrightarrow \left\{ \begin{array}{l}\left[ {\overrightarrow u ,\overrightarrow {u'} } \right] \ne \overrightarrow 0 \\\left[ {\overrightarrow u ,\overrightarrow {u'} } \right]\overrightarrow {MM'} = 0\end{array} \right.\)
Chọn A.
Câu 7:
Ta có: \(d\) chéo \(d' \Leftrightarrow \overrightarrow u ,\overrightarrow {u'} ,\overrightarrow {MM'} \) không đồng phẳng \( \Leftrightarrow \left[ {\overrightarrow u ,\overrightarrow {u'} } \right]\overrightarrow {MM'} \ne 0\).
Chọn D.
Câu 8:
Nếu hệ phương trình giao điểm hai đường thẳng có nghiệm duy nhất thì hai đường thẳng cắt nhau.
Chọn D.
Câu 9:
Nếu hệ phương trình giao điểm hai đường thẳng vô nghiệm thì \(d\) và \(d'\) không có điểm chung thì hoặc song song hặc chéo nhau.
Hơn nữa \(\overrightarrow u ,\overrightarrow {u'} \) cùng phương thì hai đường thẳng song song.
Chọn B.
Câu 10:
Khoảng cách từ điểm \(A\) đến đường thẳng \(d'\) được tính theo công thức \(d\left( {A,d'} \right) = \frac{{\left| {\left[ {\overrightarrow {AM'} ,\overrightarrow {u'} } \right]} \right|}}{{\left| {\overrightarrow {u'} } \right|}}\)
Chọn A.
Xemloigiai.com
Xem thêm Bài tập & Lời giải
Xem thêm lời giải Đề thi, đề kiểm tra Toán lớp 12
Dưới đây là danh sách Đề thi, đề kiểm tra Toán lớp 12 chọn lọc, có đáp án, cực sát đề chính thức theo nội dung sách giáo khoa Lớp 12.
Đề thi giữa học kì 1 Toán 12
- 👉 Đề ôn tập giữa học kì 1 – Có đáp án và lời giải
- 👉 Đề thi giữa học kì 1 của các trường có lời giải – Mới nhất
Đề thi học kì 1 Toán 12
- 👉 Đề cương học kì I
- 👉 Đề thi học kì 1 mới nhất có lời giải
- 👉 Đề ôn tập học kì 1 – Có đáp án và lời giải
- 👉 Đề thi học kì 1 của các trường có lời giải – Mới nhất
Đề thi giữa học kì 2 Toán 12
Đề thi học kì 2 Toán 12
- 👉 Đề cương học kì II
- 👉 Đề ôn tập học kì 2 – Có đáp án và lời giải
- 👉 Đề thi học kì 2 của các trường có lời giải – Mới nhất
Đề kiểm tra 15 phút Toán 12
- 👉 Đề kiểm tra 15 phút - Chương I - Giải Tích 12
- 👉 Đề kiểm tra 15 phút - Chương II - Giải Tích 12
- 👉 Đề kiểm tra 15 phút - Chương III - Giải Tích 12
- 👉 Đề kiểm tra 15 phút – Chương IV – Giải tích 12
- 👉 Đề kiểm tra 15 phút - Chương I - Hình học 12
- 👉 Đề kiểm tra 15 phút - Chương II - Hình học 12
- 👉 Đề kiểm tra 15 phút - Chương III - Hình học 12
Đề kiểm tra 1 tiết Toán 12
- 👉 Đề kiểm tra 45 phút (1 tiết) - Chương I - Giải Tích 12
- 👉 Đề kiểm tra 45 phút (1 tiết) - Chương II - Giải Tích 12
- 👉 Đề kiểm tra 45 phút (1 tiết) - Chương III - Giải Tích 12
- 👉 Đề kiểm tra 45 phút (1 tiết) - Chương IV - Giải Tích 12
- 👉 Đề kiểm tra 45 phút (1 tiết) - Chương I - Hình học 12
- 👉 Đề kiểm tra 45 phút (1 tiết) - Chương II - Hình học 12
- 👉 Đề kiểm tra 45 phút (1 tiết) - Chương III - Hình học 12
Xem Thêm
Lớp 12 | Các môn học Lớp 12 | Giải bài tập, đề kiểm tra, đề thi Lớp 12 chọn lọc
Danh sách các môn học Lớp 12 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.
Toán Học
- Đề thi, đề kiểm tra Toán lớp 12
- SBT Toán lớp 12 Nâng cao
- SBT Toán 12 Nâng cao
- SGK Toán 12 Nâng cao
- SBT Toán lớp 12
- SGK Toán lớp 12
Vật Lý
- SBT Vật lí 12 Nâng cao
- SGK Vật lí lớp 12 Nâng cao
- SBT Vật lí lớp 12
- SGK Vật lí lớp 12
- Giải môn Vật lí lớp 12
Hóa Học
- Đề thi, đề kiểm tra Hóa lớp 12
- SBT Hóa học 12 Nâng cao
- SGK Hóa học lớp 12 Nâng cao
- SBT Hóa lớp 12
- SGK Hóa lớp 12
Ngữ Văn
- Đề thi, đề kiểm tra Ngữ Văn 12 mới
- Soạn văn 12
- SBT Ngữ văn lớp 12
- Luyện dạng đọc hiểu
- Văn mẫu 12
- Soạn văn 12 chi tiết
- Soạn văn ngắn gọn lớp 12
- Soạn văn 12 siêu ngắn
- Bài soạn văn lớp 12 siêu ngắn
- Bài soạn văn 12
Lịch Sử
Địa Lý
Sinh Học
- Đề thi, đề kiểm tra Sinh lớp 12
- SGK Sinh lớp 12 Nâng cao
- SBT Sinh lớp 12
- SGK Sinh lớp 12
- Giải môn Sinh học lớp 12
GDCD
Tin Học
Tiếng Anh
- Đề thi, đề kiểm tra Tiếng Anh 12 mới
- SBT Tiếng Anh lớp 12
- Ngữ pháp Tiếng Anh
- SGK Tiếng Anh 12
- SBT Tiếng Anh lớp 12 mới
- SGK Tiếng Anh 12 Mới