Giải bài 2 trang 21 SBT toán 10 - Chân trời sáng tạo

Xét dấu của các tam thức bậc hai sau:

Đề bài

Xét dấu của các tam thức bậc hai sau:

a) \(f\left( x \right) =  - 7{x^2} + 44x - 45\)                       b) \(f\left( x \right) = 4{x^2} + 36x + 81\)

c) \(f\left( x \right) = 9{x^2} - 6x + 3\)                                        d) \(f\left( x \right) =  - 9{x^2} + 30x - 25\)

e) \(f\left( x \right) =  - {x^2} - 4x + 3\)                                       g) \(f\left( x \right) =  - 4{x^2} + 8x - 7\)

Lời giải chi tiết

a) \(f\left( x \right) =  - 7{x^2} + 44x - 45\)\(\Delta  = 676 > 0\), hai nghiệm \({x_1} = \frac{9}{7};{x_2} = 5\) và có \(a =  - 7 < 0\)

Ta có bảng xét dấu \(f\left( x \right)\) như sau:

Vậy \(f\left( x \right)\) dương trong khoảng \(\left( {\frac{9}{7};5} \right)\) và âm trong khoảng \(\left( { - \infty ;\frac{9}{7}} \right) \cup \left( {5; + \infty } \right)\)

b) \(f\left( x \right) = 4{x^2} + 36x + 81\)\(\Delta  = 0\), nghiệm kép \({x_1} = {x_2} =  - \frac{9}{2}\) và có \(a = 4 > 0\)

nên \(f\left( x \right)\) luôn dương với \(x \ne  - \frac{9}{2}\)

Vậy \(f\left( x \right)\) dương trong khoảng \(\mathbb{R}\backslash \left\{ { - \frac{9}{2}} \right\}\)

c) \(f\left( x \right) = 9{x^2} - 6x + 3\)\(\Delta  =  - 72 < 0\)\(a = 9 > 0\)

nên \(f\left( x \right)\) luôn dương với mọi \(x \in \mathbb{R}\)

Vậy \(f\left( x \right)\) dương với mọi x

d) \(f\left( x \right) =  - 9{x^2} + 30x - 25\)  có \(\Delta  = 0\), nghiệm kép \({x_1} = {x_2} = \frac{5}{3}\) và có \(a =  - 9 < 0\)

nên \(f\left( x \right)\) luôn âm với \(x \ne \frac{5}{3}\)

Vậy \(f\left( x \right)\) âm trong khoảng \(\mathbb{R}\backslash \left\{ {\frac{5}{3}} \right\}\)

 

e) \(f\left( x \right) = {x^2} - 4x + 3\)\(\Delta  = 4 > 0\), hai nghiệm \({x_1} = 1;{x_2} = 3\) và có \(a = 1 > 0\)

Ta có bảng xét dấu \(f\left( x \right)\) như sau:

 

Vậy \(f\left( x \right)\) dương trên khoảng \(\left( { - \infty ;1} \right) \cup \left( {3; + \infty } \right)\) và âm trong khoảng \(\left( {1;3} \right)\)

g) \(f\left( x \right) =  - 4{x^2} + 8x - 7\) có có \(\Delta  =  - 48 < 0\)\(a =  - 4 < 0\)

nên \(f\left( x \right)\) luôn âm với mọi \(x \in \mathbb{R}\)

Xem thêm Bài tập & Lời giải

Trong bài: Bài tập cuối chương VII - SBT Toán 10 CTST

Xem thêm lời giải SBT Toán 10 - Chân trời sáng tạo

Để học tốt SBT Toán 10 - Chân trời sáng tạo, loạt bài giải bài tập SBT Toán 10 - Chân trời sáng tạo đầy đủ kiến thức, lý thuyết và bài tập được biên soạn bám sát theo nội dung sách giáo khoa Lớp 10.

GIẢI SBT TOÁN 10 TẬP 1 - CHÂN TRỜI SÁNG TẠO

GIẢI SBT TOÁN 10 TẬP 2 - CHÂN TRỜI SÁNG TẠO

Chương I. Mệnh đề và tập hợp - SBT Toán 10 CTST

Chương II. Bất phương trình và hệ phương bất phương trình bậc nhất hai ẩn - SBT Toán 10 CTST

Chương III. Hàm số bậc hai và đồ thị - SBT Toán 10 CTST

Chương IV. Hệ thức lượng trong tam giác - SBT Toán 10 CTST

Chương V. Vectơ - SBT Toán 10 CTST

Chương VI. Thống kê - SBT Toán 10 CTST

Chương VII. Bất phương trình bậc hai một ấn - SBT Toán 10 CTST

Chương VIII. Đại số tổ hợp - SBT Toán 10 CTST

Chương IX. Phương pháp tọa độ trongg mặt phẳng - SBT Toán 10 CTST

Chương X. Xác suất - SBT Toán 10 CTST

Lớp 10 | Các môn học Lớp 10 | Giải bài tập, đề kiểm tra, đề thi Lớp 10 chọn lọc

Danh sách các môn học Lớp 10 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.

Toán Học

Vật Lý

Hóa Học

Ngữ Văn

Lịch Sử

Địa Lý

Sinh Học

GDCD

Tin Học

Tiếng Anh

Công Nghệ

Âm Nhạc & Mỹ Thuật

Hoạt động trải nghiệm