Giải bài 4.26 trang 58 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

Trong mặt phẳng tọa độ Oxy cho hai điểm C(1;6) và D(11;2).

Đề bài

Trong mặt phẳng tọa độ \(Oxy\) cho hai điểm \(C(1;6)\) và \(D(11;2).\)

a)      Tìm tọa độ của điểm \(E\) thuộc trục tung sao cho vectơ \(\overrightarrow {EC}  + \overrightarrow {ED} \) có độ dài ngắn nhất.

b)     Tìm tọa độ của điểm \(F\) thuộc trục hoành sao cho \(\left| {2\overrightarrow {FC}  + 3\overrightarrow {FD} } \right|\) đạt giá trị nhỏ nhất.

c)      Tìm tập hợp các điểm \(M\) sao cho \(\left| {\overrightarrow {MC}  + \overrightarrow {MD} } \right| = CD.\)

Lời giải chi tiết

a)      Vì điểm \(E\) thuộc trục tung nên tọa độ điểm \(E\) là: \(E(0;y).\)

Ta có: \(\overrightarrow {EC}  = (1;6 - y)\) và \(\overrightarrow {ED}  = (11;2 - y).\)

Khi đó: \(\overrightarrow {EC}  + \overrightarrow {ED}  = (1;6 - y) + (11;2 - y) = (12;8 - 2y)\)

\( \Rightarrow \) \(\left| {\overrightarrow {EC}  + \overrightarrow {ED} } \right| = \sqrt {{{12}^2} + {{\left( {8 - 2y} \right)}^2}}  = \sqrt {4{{\left( {y - 4} \right)}^2} + 144} \)

Do \(4{\left( {y - 4} \right)^2} \ge 0\,\,\forall y,\) đẳng thức xảy ra khi và chỉ khi \(y = 4,\) nên \(\left| {\overrightarrow {EC}  + \overrightarrow {ED} } \right| \ge 12,\) đẳng thức xảy ra khi và chỉ khi \(y = 4.\)

Vậy \(E(0;4)\) thì \(\overrightarrow {EC}  + \overrightarrow {ED} \) có độ dài ngắn nhất.

b)     Vì điểm \(F\) thuộc trục hoành nên tọa độ điểm \(F\) là \(F(x;0).\)

Ta có: \(\overrightarrow {FC}  = (1 - x;6)\) và \(\overrightarrow {FD}  = (11 - x;2).\)

Khi đó: \(2\overrightarrow {FC}  + 3\overrightarrow {FD}  = 2(1 - x;6) + 3(11 - x;2) = (35 - 5x;18).\)

\( \Rightarrow \) \(\left| {2\overrightarrow {FC}  + 3\overrightarrow {FD} } \right| = \sqrt {{{\left( {35 - 5x} \right)}^2} + {{18}^2}}  = \sqrt {25{{\left( {x - 7} \right)}^2} + {{18}^2}} \)

Do \(25{\left( {x - 7} \right)^2} \ge 0\,\,\forall x,\) đẳng thức xảy ra khi và chỉ khi \(x = 7,\) nên \(\left| {2\overrightarrow {FC}  + 3\overrightarrow {FD} } \right| \ge 18,\) đẳng thức xảy ra khi vào chỉ khi \(x = 7.\)

Vậy \(F(7;0)\) thì \(\left| {2\overrightarrow {FC}  + 3\overrightarrow {FD} } \right|\) đạt giá trị nhỏ nhất.

c)      Ta có: \(CD = \left| {\overrightarrow {CD} } \right| = \sqrt {{{\left( {11 - 1} \right)}^2} + {{\left( {2 - 6} \right)}^2}}  = 2\sqrt {29} \)

Gọi \(I\) là trung điểm của \(CD\) nên \(I(6;4)\)

Ta có: \(\overrightarrow {MC}  + \overrightarrow {MD}  = 2\overrightarrow {MI} \)

Khi đó: \(\left| {\overrightarrow {MC}  + \overrightarrow {MD} } \right| = \left| {2\overrightarrow {MI} } \right| = CD = 2\sqrt {29} \,\, \Leftrightarrow \,\,2MI = 2\sqrt {29} \,\, \Leftrightarrow \,\,MI = \sqrt {29} \)

Vậy tập hợp điểm \(M\) là đường tròn tâm \(I\) bán kính \(MI = \sqrt {29} \)

Xem thêm lời giải SBT Toán 10 - Kết nối tri thức

Để học tốt SBT Toán 10 - Kết nối tri thức, loạt bài giải bài tập SBT Toán 10 - Kết nối tri thức đầy đủ kiến thức, lý thuyết và bài tập được biên soạn bám sát theo nội dung sách giáo khoa Lớp 10.

GIẢI SBT TOÁN 10 TẬP 1 - KẾT NỐI TRI THỨC VỚI CUỘC SỐNG

GIẢI SBT TOÁN 10 TẬP 2 - KẾT NỐI TRI THỨC VỚI CUỘC SỐNG

Chương I. Mệnh đề và tập hợp - SBT Toán 10 KNTT

Chương II. Bất phương trình và hệ bất phương trình bậc nhất hai ẩn - SBT Toán 10 KNTT

Chương III. Hệ thức lượng trong tam giác - SBT Toán 10 KNTT

Chương IV. Vectơ - SBT Toán 10 KNTT

Chương V. Các số đặc trưng của mẫu số liệu không ghép nhóm - SBT Toán 10 KNTT

Chương VI. Hàm số, đồ thị và ứng dụng - SBT Toán 10 KNTT

Chương VII. Phương pháp tọa độ trong mặt phẳng - SBT Toán 10 KNTT

Chương VIII. Đại số tổ hợp - SBT Toán 10 KNTT

Chương IX. Tính xác suất theo công thức xác suất cổ điển - SBT Toán 10 KNTT

Lớp 10 | Các môn học Lớp 10 | Giải bài tập, đề kiểm tra, đề thi Lớp 10 chọn lọc

Danh sách các môn học Lớp 10 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.

Toán Học

Vật Lý

Hóa Học

Ngữ Văn

Lịch Sử

Địa Lý

Sinh Học

GDCD

Tin Học

Tiếng Anh

Công Nghệ

Âm Nhạc & Mỹ Thuật

Hoạt động trải nghiệm