Giải bài 5 trang 63 SGK Toán 10 tập 2 – Chân trời sáng tạo

a) Chứng tỏ rằng điểm M(4;6) thuộc đường tròn (C) b) Viết phương trình tiếp tuyến của (C) tại điểm M(4;6) c) Viết phương trình tiếp tuyến của (C) song song với đường thẳng 4x + 3y + 2022 = 0

Đề bài

Cho đường tròn \((C)\) có phương trình \({x^2} + {y^2} - 2x - 4y - 20 = 0\)

a) Chứng tỏ rằng điểm \(M(4;6)\) thuộc đường tròn \((C)\)

b) Viết phương trình tiếp tuyến của \((C)\) tại điểm \(M(4;6)\)

c) Viết phương trình tiếp tuyến của \((C)\)song song với đường thẳng \(4x + 3y + 2022 = 0\)

Phương pháp giải - Xem chi tiết

a) Thay tọa độ điểm M vào phương trình đường tròn

                +) Nếu biểu thức đó bằng 0 thì M thuộc đường tròn

                +) Nếu biểu thức khác 0 thì M không thuộc đường tròn

b) Phương trình tiếp tuyến của đường trong tâm \(I(a;b)\) tại điểm \(M({x_0};{y_0})\)nằm trên đường tròn là: \(\left( {a - {x_0}} \right)\left( {x - {x_0}} \right) + \left( {b - {y_0}} \right)\left( {y - {y_0}} \right) = 0\)

c)            Bước 1: Xác định pt tổng quát của tiếp tuyến (biết hai đường thẳng song song với nhau thì có cùng vt pháp tuyến)

                Bước 2: Xác định tiếp tuyến (biết khoảng cách từ tâm đến tiếp tuyến là bán kính)

Lời giải chi tiết

a) Thay điểm \(M(4;6)\)vào phương trình đường tròn \({x^2} + {y^2} - 2x - 4y - 20 = 0\)ta có:

\({4^2} + {6^2} - 2.4 - 4.6 - 20 = 0\)

Suy ra, điểm M thuộc đường tròn (C)

b) Đường tròn có tâm \(I(1;2)\)

Phương trình tiếp tuyến d của (C) tại \(M(4;6)\) là:

\(\begin{array}{l}\left( {4 - 1} \right)\left( {x - 4} \right) + \left( {6 - 2} \right)\left( {y - 6} \right) = 0\\ \Leftrightarrow 3x + 4y + 16 = 0\end{array}\)

c) Tiếp tuyến của đường tròn song song với đường thẳng \(4x + 3y + 2022 = 0\) nên phương trình có dạng \(d:4x + 3y + c = 0\)

Ta có tâm và bán kính của đường tròn là: \(I(1;2),r = \sqrt {{1^2} + {2^2} + 20}  = 5\)

Khoảng cách từ tâm đến tiếp tuyến là bán kính nên: \(d\left( {I,d} \right) = \frac{{\left| {4.1 + 3.2 + c} \right|}}{{\sqrt {{4^2} + {3^2}} }} = 5 \Rightarrow \left[ \begin{array}{l}c = 15\\c =  - 35\end{array} \right.\)

Vậy đường tròn (C) có hai tiếp tuyến song song với đường thẳng \(4x + 3y + 2022 = 0\) là \({d_1}:4x + 3y + 15 = 0,{d_2}:4x + 3y - 35 = 0\)

Xem thêm lời giải SGK Toán 10 - Chân trời sáng tạo

Để học tốt SGK Toán 10 - Chân trời sáng tạo, loạt bài giải bài tập SGK Toán 10 - Chân trời sáng tạo đầy đủ kiến thức, lý thuyết và bài tập được biên soạn bám sát theo nội dung sách giáo khoa Lớp 10.

Giải Toán 10 tập 1 - Chân trời sáng tạo

Giải Toán 10 tập 2 - Chân trời sáng tạo

Chương I. Mệnh đề và tập hợp

Chương II. Bất phương trình và hệ bất phương trình bậc nhất hai ẩn

Chương III. Hàm số bậc hai và đồ thị

Chương IV. Hệ thức lượng trong tam giác

Chương V. Vecto

Chương VI. Thống kê

Hoạt động thực hành và trải nghiệm

Chương VII. Bất phương trình bậc hai một ẩn

Chương VIII. Đại số tổ hợp

Chương IX. Phương pháp tọa độ trong mặt phẳng

Chương X. Xác suất

Hoạt động thực hành và trải nghiệm trang 87

Lớp 10 | Các môn học Lớp 10 | Giải bài tập, đề kiểm tra, đề thi Lớp 10 chọn lọc

Danh sách các môn học Lớp 10 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.

Toán Học

Vật Lý

Hóa Học

Ngữ Văn

Lịch Sử

Địa Lý

Sinh Học

GDCD

Tin Học

Tiếng Anh

Công Nghệ

Âm Nhạc & Mỹ Thuật

Hoạt động trải nghiệm