Giải bài 7.7 trang 41 SGK Toán 10 – Kết nối tri thức

Xét vị trí tương đối giữa các cặp đường thẳng sau:

Đề bài

Xét vị trí tương đối giữa các cặp đường thẳng sau:

a) \({\Delta _1}:3\sqrt 2 x + \sqrt 2 y - \sqrt 3  = 0\) và \({\Delta _2}:6x + 2y - \sqrt 6  = 0\)

b) \({d_1}:x - \sqrt 3 y + 2 = 0\) và \({d_2}:\sqrt 3 x - 3y + 2 = 0\)

c) \({m_1}:x - 2y + 1 = 0\) và \({m_2}:3x + y - 2 = 0\)

Lời giải chi tiết

a) Ta có: \({\Delta _1}:3\sqrt 2 x + \sqrt 2 y - \sqrt 3  = 0 \Leftrightarrow \sqrt 2 \left( {3\sqrt 2 x + \sqrt 2 y - \sqrt 3 } \right) = 0 \Leftrightarrow 6x + 2y - \sqrt 6  = 0\)

Do đó hai đường thẳng trùng nhau.

b) Ta có: \(\frac{1}{{\sqrt 3 }} = \frac{{ - \sqrt 3 }}{{ - 3}} \ne \frac{2}{2}\), do đó hai đường thẳng song song với nhau.

c) Ta có: \(\frac{1}{3} \ne \frac{{ - 2}}{1}\), do đó hai đường thẳng cắt nhau. 

Xem thêm lời giải SGK Toán 10 - Kết nối tri thức

Để học tốt SGK Toán 10 - Kết nối tri thức, loạt bài giải bài tập SGK Toán 10 - Kết nối tri thức đầy đủ kiến thức, lý thuyết và bài tập được biên soạn bám sát theo nội dung sách giáo khoa Lớp 10.

Giải Toán 10 tập 1 - Kết nối tri thức

Giải Toán 10 tập 2 - Kết nối tri thức

Chương I. Mệnh đề và tập hợp

Chương II. Bất phương trình và hệ bất phương trình bậc nhất hai ẩn

Chương III. Hệ thức lượng trong tam giác

Chương IV. Vectơ

Chương V. Các số đặc trưng của mẫu số liệu không ghép nhóm

Hoạt động thực hành trải nghiệm

Chương VI. Hàm số, đồ thị và ứng dụng

Chương VII. Phương pháp tọa độ trong mặt phẳng

Chương VIII. Đại số tổ hợp

Chương IX. Tính xác suất theo định nghĩa cổ điển

Lớp 10 | Các môn học Lớp 10 | Giải bài tập, đề kiểm tra, đề thi Lớp 10 chọn lọc

Danh sách các môn học Lớp 10 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.

Toán Học

Vật Lý

Hóa Học

Ngữ Văn

Lịch Sử

Địa Lý

Sinh Học

GDCD

Tin Học

Tiếng Anh

Công Nghệ

Âm Nhạc & Mỹ Thuật

Hoạt động trải nghiệm