Giải đề thi học kì 2 toán lớp 11 năm 2019 - 2020 trường THPT Bùi Thị Xuân - TP Hồ Chí Minh

Giải chi tiết đề thi học kì 2 môn toán lớp 11 năm 2019 - 2020 trường THPT Bùi Thị Xuân - TP Hồ Chí Minh với cách giải nhanh và chú ý quan trọng

Bài làm:

PHẦN ĐẠI SỐ (6 điểm)

Bài 1

Tính giới hạn \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{x\left( {\sqrt {4{x^2} + x + 1}  + 3x} \right)}}{{{x^2} + 2}}\)

Bài 2

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{{x^3} - 5{x^2} + 12}}{{2x - 4}}\,\,\,\left( {x \ne 2} \right)\\3{a^2} - 7\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {x = 2} \right)\end{array} \right.\)

Định \(a\) để hàm số liên tục tại điểm \(x = 2\).

Bài 3

Tính đạo hàm các hàm số sau:

a) \(y = \sqrt {{x^2} + 3x + 1} \)

b) \(y = \left( {2x - 5} \right)\sin 3x\)

Bài 4

Một vật chuyển động có phương trình \(S\left( t \right) = \frac{{2{t^3}}}{3} - \frac{1}{t} + 6\), trong đó \(t\) (tính bằng giây) là thời gian vật chuyển động kể từ lúc bắt đầu chuyển động \(\left( {t > 0} \right)\) và \(S\) (tính bằng mét) là quãng đường vật đi được trong khoảng thời gian \(t\). Tính vận tốc và gia tốc của vật tại thời điểm \(t = 5\left( s \right)\).

Bài 5

Cho hàm số \(y = {x^3} + 3{x^2} - 1\) có đồ thị \(\left( C \right)\). Viết phương trình tiếp tuyến \(\Delta \) của đồ thị \(\left( C \right)\), biết tiếp tuyến \(\Delta \) song song đường thẳng \(d:y = 9x - 6\).

Bài 6

Chứng minh phương trình \(\left( {{m^2} + 2m + 6} \right){x^4} + x - 2 = 0\) luôn có nghiệm với mọi giá trị thực của tham số \(m\).

PHẦN HÌNH HỌC (4 điểm)

Bài 7

Cho tứ diện \(SABC\) có \(SA,AB,AC\) đôi một vuông góc, biết \(SA = AB = AC = a\). Gọi \(I\) là trung điểm của đoạn \(BC\).

a) Chứng minh đường thẳng \(SA\) vuông góc với mặt phẳng \(\left( {ABC} \right)\). Chứng minh mặt phẳng \(\left( {SAB} \right)\) vuông góc với mặt phẳng \(\left( {SAC} \right)\).

b) Chứng minh mặt phẳng \(\left( {SAI} \right)\) vuông góc với mặt phẳng \(\left( {SBC} \right)\).

c) Tính góc giữa hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SAI} \right)\).

d) Trên tia đối của tia \(IA\) lấy điểm \(D\) sao cho \(ID = 2IA\) và gọi \(E\) là trung điểm của đoạn \(SD\). Tính khoảng cách từ điểm \(E\) đến mặt phẳng \(\left( {SBC} \right)\) theo \(a\).

HẾT

 

 

 

 

 

HƯỚNG DẪN GIẢI CHI TIẾT

Thực hiện: Ban chuyên môn xemloigiai.com

 

Bài 1 (VD):

Phương pháp:

Chia cả tử và mẫu cho \({x^2}\).

Cách giải:

\(\begin{array}{l}\mathop {\lim }\limits_{x \to  + \infty } \frac{{x\left( {\sqrt {4{x^2} + x + 1}  + 3x} \right)}}{{{x^2} + 2}}\\ = \mathop {\lim }\limits_{x \to  + \infty } \frac{{x\left( {\sqrt {{x^2}\left( {4 + \frac{1}{x} + \frac{1}{{{x^2}}}} \right)}  + 3x} \right)}}{{{x^2} + 2}}\\ = \mathop {\lim }\limits_{x \to  + \infty } \frac{{x\left( {\left| x \right|\sqrt {4 + \frac{1}{x} + \frac{1}{{{x^2}}}}  + 3x} \right)}}{{{x^2} + 2}}\\ = \mathop {\lim }\limits_{x \to  + \infty } \frac{{x\left( {x\sqrt {4 + \frac{1}{x} + \frac{1}{{{x^2}}}}  + 3x} \right)}}{{{x^2} + 2}}\\ = \mathop {\lim }\limits_{x \to  + \infty } \frac{{{x^2}\left( {\sqrt {4 + \frac{1}{x} + \frac{1}{{{x^2}}}}  + 3} \right)}}{{{x^2}\left( {1 + \frac{2}{{{x^2}}}} \right)}}\\ = \mathop {\lim }\limits_{x \to  + \infty } \frac{{\sqrt {4 + \frac{1}{x} + \frac{1}{{{x^2}}}}  + 3}}{{1 + \frac{2}{{{x^2}}}}}\\ = \frac{{\sqrt {4 + 0 + 0}  + 3}}{{1 + 0}} = 5\end{array}\)

Bài 2 (VD):

Phương pháp:

Hàm số \(y = f\left( x \right)\) liên tục tại \(x = {x_0}\) \( \Leftrightarrow \mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\).

Cách giải:

Ta có:

\(\begin{array}{l}\mathop {\lim }\limits_{x \to 2} f\left( x \right) = \mathop {\lim }\limits_{x \to 2} \frac{{{x^3} - 5{x^2} + 12}}{{2x - 4}}\\ = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {x - 2} \right)\left( {{x^2} - 3x - 6} \right)}}{{2\left( {x - 2} \right)}}\\ = \mathop {\lim }\limits_{x \to 2} \frac{{{x^2} - 3x - 6}}{2}\\ = \frac{{{2^2} - 3.2 - 6}}{2} =  - 4\\f\left( 2 \right) = 3{a^2} - 7\end{array}\)

Để hàm số liên tục tại \(x = 2\) thì:

\(\begin{array}{l}\mathop {\lim }\limits_{x \to 2} f\left( x \right) = f\left( 2 \right)\\ \Leftrightarrow  - 4 = 3{a^2} - 7\\ \Leftrightarrow 3{a^2} = 3\\ \Leftrightarrow {a^2} = 1\\ \Leftrightarrow a =  \pm 1\end{array}\)

Vậy \(a =  \pm 1\).

Bài 3 (VD):

Phương pháp:

Sử dụng các công thức tính đạo hàm:

\(\left( {\sqrt u } \right)' = \frac{{u'}}{{2\sqrt u }}\)

\(\left( {uv} \right)' = u'v + uv'\)

\(\left( {\sin u} \right)' = u'\cos u\)

Cách giải:

a)\(y = \sqrt {{x^2} + 3x + 1} \)

\(\begin{array}{l}y' = \left( {\sqrt {{x^2} + 3x + 1} } \right)'\\ = \frac{{\left( {{x^2} + 3x + 1} \right)'}}{{2\sqrt {{x^2} + 3x + 1} }}\\ = \frac{{2x + 3}}{{2\sqrt {{x^2} + 3x + 1} }}\end{array}\)

Vậy \(y' = \frac{{2x + 3}}{{2\sqrt {{x^2} + 3x + 1} }}\)

b) \(y = \left( {2x - 5} \right)\sin 3x\)

\(\begin{array}{l}y'\\ = \left( {2x - 5} \right)'\sin 3x + \left( {2x - 5} \right)\left( {\sin 3x} \right)'\\ = 2\sin 3x + \left( {2x - 5} \right).\left( {3x} \right)'\cos 3x\\ = 2\sin 3x + 3\left( {2x - 5} \right)\cos 3x\\ = 2\sin 3x + \left( {6x - 15} \right)\cos 30\end{array}\)

Vậy \(y' = 2\sin 3x + \left( {6x - 15} \right)\cos 3x\)

Bài 4 (VD):

Phương pháp:

Sử dụng công thức

\(\begin{array}{l}v\left( t \right) = S'\left( t \right)\\a\left( t \right) = v'\left( t \right)\end{array}\)

Cách giải:

Ta có:

\(\begin{array}{l}S\left( t \right) = \frac{{2{t^3}}}{3} - \frac{1}{t} + 6\\v\left( t \right) = S'\left( t \right) = \left( {\frac{{2{t^3}}}{3} - \frac{1}{t} + 6} \right)'\\ = \frac{{2.3{t^2}}}{3} - \left( { - \frac{1}{{{t^2}}}} \right) + 0\\ = 2{t^2} + \frac{1}{{{t^2}}}\\a\left( t \right) = v'\left( t \right) = \left( {2{t^2} + \frac{1}{{{t^2}}}} \right)'\\ = 2.2t + \frac{{ - 2t}}{{{t^4}}} = 4t - \frac{2}{{{t^3}}}\end{array}\)

Với \(t = 5\) thì

\(\begin{array}{l}v\left( 5 \right) = {2.5^2} + \frac{1}{{{5^2}}} = 50,04\left( {m/s} \right)\\a\left( 5 \right) = 4.5 - \frac{2}{{{5^3}}} = 19,984\left( {m/{s^2}} \right)\end{array}\)

Vậy tại thời điểm \(t = 5\left( s \right)\) thì vận tốc của vật là \(50,04m/s\) và gia tốc của vật là \(19,984m/{s^2}\).

Bài 5 (VD):

Phương pháp:

- Tính \(y'\).

- Giải phương trình \(k = f'\left( {{x_0}} \right) = {k_d}\) với \({k_d}\) là hệ số góc của \(d\).

- Từ đó viết phương trình tiếp tuyến theo công thức \(y = k\left( {x - {x_0}} \right) + {y_0}\).

Cách giải:

Đặt \(y = f\left( x \right) = {x^3} + 3{x^2} - 1\).

Ta có: \(f'\left( x \right) = 3{x^2} + 6x\).

Gọi \(M\left( {{x_0};{y_0}} \right)\) là tọa độ tiếp điểm.

\(\Delta //d:y = 9x - 6\) \( \Rightarrow \)hệ số góc của \(\Delta \) là \({k_\Delta } = {k_d} = 9\)

\(\begin{array}{l} \Rightarrow f'\left( {{x_0}} \right) = 9\\ \Leftrightarrow 3x_0^2 + 6{x_0} = 9\\ \Leftrightarrow 3x_0^2 + 6{x_0} - 9 = 0\\ \Leftrightarrow \left[ \begin{array}{l}{x_0} = 1\\{x_0} =  - 3\end{array} \right.\end{array}\)

+) Với \({x_0} = 1\) thì \({y_0} = {1^3} + {3.1^2} - 1 = 3\).

Phương trình tiếp tuyến tại \(M\left( {1;3} \right)\) là: \(y = 9\left( {x - 1} \right) + 3\) hay \(y = 9x - 6\) (loại vì trùng với \(d\))

+) Với \({x_0} =  - 3\) thì \({y_0} = {\left( { - 3} \right)^3} + 3.{\left( { - 3} \right)^2} - 1 =  - 1\).

Phương trình tiếp tuyến tại \(M\left( { - 3; - 1} \right)\) là: \(y = 9\left( {x + 3} \right) - 1\) hay \(y = 9x + 26\) (thỏa mãn)

Vậy tiếp tuyến cần tìm có phương trình: \(\Delta :y = 9x + 26\).

Bài 6 (VD):

Phương pháp:

Sử dụng định lý: “Nếu hàm số \(y = f\left( x \right)\) liên tục trên \(\left[ {a;b} \right]\) và \(f\left( a \right).f\left( b \right) < 0\) thì tồn tại ít nhất một điểm \(c \in \left( {a;b} \right)\) sao cho \(f\left( c \right) = 0\)”.

Cách giải:

Đặt \(f\left( x \right) = \left( {{m^2} + 2m + 6} \right){x^4} + x - 2\).

TXĐ: \(D = \mathbb{R}\).

Hàm số \(f\left( x \right)\) là hàm đa thức nên liên tục trên \(\mathbb{R}\), do đó cung liên tục trên \(\left[ {0;1} \right]\).

Ta có:

\(f\left( 0 \right) = \left( {{m^2} + 2m + 6} \right){.0^4} + 0 - 2\) \( =  - 2 < 0\)

\(f\left( 1 \right) = \left( {{m^2} + 2m + 6} \right){.1^4} + 1 - 2\) \( = {m^2} + 2m + 5\) \( = {m^2} + 2m + 1 + 4\) \( = {\left( {m + 1} \right)^2} + 4 > 0,\forall m\)

Do đó \(f\left( 0 \right).f\left( 1 \right)\) \( =  - 2\left( {{m^2} + 2m + 5} \right) < 0,\forall m\).

Vậy phương trình \(f\left( x \right) = 0\) có ít nhất một nghiệm thuộc khoảng \(\left( {0;1} \right)\) hay phương trình đã cho luôn có nghiệm với mọi \(m\).

Bài 7 (VD):

Phương pháp:

a) Chứng minh \(SA\) vuông góc với hai đường thẳng cắt nhau nằm trong \(\left( {ABC} \right)\)

Chứng minh \(AB \bot \left( {SAC} \right)\) sau đó sử dụng \(\left\{ \begin{array}{l}a \bot \left( P \right)\\b \subset \left( P \right)\end{array} \right.\) \( \Rightarrow a \bot b\)

b) Chứng minh \(BC \bot \left( {SAI} \right)\) sau đó sử dụng \(\left\{ \begin{array}{l}a \bot \left( P \right)\\b \subset \left( P \right)\end{array} \right.\) \( \Rightarrow a \bot b\)

c) Sử dụng \(\left\{ \begin{array}{l}\left( P \right) \cap \left( Q \right) = d\\a \bot d;a \subset \left( P \right)\\b \bot d;b \subset \left( Q \right)\end{array} \right.\)  thì góc giữa \(\left( P \right)\) và \(\left( Q \right)\) là góc giữa hai đường thẳng \(a\) và \(b\)

d) Sử dụng: Nếu \(AB \cap \left( P \right)\) tại \(I\) thì \(\frac{{d\left( {A;\left( P \right)} \right)}}{{d\left( {B;\left( P \right)} \right)}} = \frac{{AI}}{{BI}}\)  để chỉ ra \(d\left( {E;\left( {SBC} \right)} \right) = d\left( {A;\left( {SBC} \right)} \right)\)

Từ đó tính \(d\left( {A;\left( {SBC} \right)} \right)\) bằng cách dùng hệ thức lượng trong tam giác vuông.

Cách giải:

Cho tứ diện \(SABC\)\(SA,AB,AC\) đôi một vuông góc, biết \(SA = AB = AC = a\). Gọi \(I\) là trung điểm của đoạn \(BC\).

a) Chứng minh đường thẳng \(SA\) vuông góc với mặt phẳng \(\left( {ABC} \right)\). Chứng minh mặt phẳng \(\left( {SAB} \right)\) vuông góc với mặt phẳng \(\left( {SAC} \right)\).

Vì \(\left\{ \begin{array}{l}SA \bot AB\\SA \bot AC\\AB \cap AC = \left\{ A \right\}\end{array} \right.\) \( \Rightarrow SA \bot \left( {ABC} \right)\)

Ta có \(\left\{ \begin{array}{l}AB \bot AC\\AB \bot SA\\AC \cap SA = \left\{ A \right\}\end{array} \right.\) \( \Rightarrow \) \(AB \bot \left( {SAC} \right)\)

Từ đó \(\left\{ \begin{array}{l}AB \bot \left( {SAC} \right)\\AB \subset \left( {SAB} \right)\end{array} \right.\) \( \Rightarrow \left( {SAB} \right) \bot \left( {SAC} \right)\)

b) Chứng minh mặt phẳng \(\left( {SAI} \right)\) vuông góc với mặt phẳng \(\left( {SBC} \right)\).

Xét tam giác ABC cân tại A (do \(AB = AC\)) có \(AI\) là trung tuyến nên \(AI \bot BC\)

Vì \(SA \bot \left( {ABC} \right)\) (theo câu a) nên \(SA \bot BC\)

Ta có: \(\left\{ \begin{array}{l}BC \bot AI\\BC \bot SA\\SA \cap AI = \left\{ A \right\}\end{array} \right.\) \( \Rightarrow BC \bot \left( {SAI} \right)\)

Từ đó \(\left\{ \begin{array}{l}BC \bot \left( {SAI} \right)\\BC \subset \left( {SBC} \right)\end{array} \right.\) \( \Rightarrow \left( {SAI} \right) \bot \left( {SBC} \right)\)

c) Tính góc giữa hai mặt phẳng \(\left( {SAB} \right)\)\(\left( {SAI} \right)\).

Vì \(\left\{ \begin{array}{l}SA \bot \left( {ABC} \right)\\AI \subset \left( {ABC} \right)\end{array} \right.\) \( \Rightarrow SA \bot AI\)

Ta có:

\(\left\{ \begin{array}{l}\left( {SAB} \right) \cap \left( {SAI} \right) = SA\\AI \bot SA,AI \subset \left( {SAI} \right)\\AB \bot SA,AB \subset \left( {SAB} \right)\end{array} \right.\)

Suy ra góc giữa hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SAI} \right)\) là góc giữa \(AI\) và \(AB\) hay là \(\widehat {BAI}\)

Vì tam giác \(ABC\) vuông cân tại A có AI là đường trung tuyến nên AI cũng là đường phân giác góc A

Suy ra \(\widehat {BAI} = \frac{1}{2}\widehat {BAC}\) \( = \frac{1}{2}{90^0} = {45^0}\)

Vậy góc giữa hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SAI} \right)\) là \({45^0}.\)

d) Trên tia đối của tia \(IA\) lấy điểm \(D\) sao cho \(ID = 2IA\) và gọi \(E\) là trung điểm của đoạn \(SD\). Tính khoảng cách từ điểm \(E\) đến mặt phẳng \(\left( {SBC} \right)\) theo \(a\).

Ta có DE giao với \(\left( {SBC} \right)\) tại S nên \(\frac{{d\left( {E;\left( {SBC} \right)} \right)}}{{d\left( {D;\left( {SBC} \right)} \right)}}\) \( = \frac{{ES}}{{DS}} = \frac{1}{2}\)\( \Rightarrow d\left( {E;\left( {SBC} \right)} \right) = \frac{1}{2}d\left( {D;\left( {SBC} \right)} \right)\)

Lại có \(AD \cap \left( {SBC} \right)\) tại I nên \(\frac{{d\left( {D;\left( {SBC} \right)} \right)}}{{d\left( {A;\left( {SBC} \right)} \right)}} = \frac{{DI}}{{AI}} = 2\) \( \Rightarrow d\left( {D;\left( {SBC} \right)} \right) = 2d\left( {A;SBC} \right)\)

Từ đó \(d\left( {E;\left( {SBC} \right)} \right) = \frac{1}{2}.2d\left( {A;\left( {SBC} \right)} \right)\) \( = d\left( {A;\left( {SBC} \right)} \right)\)

Trong \(\left( {SAI} \right)\) kẻ \(AH \bot SI\) tại \(H\)

Ta có: \(\left\{ \begin{array}{l}BC \bot \left( {SAI} \right)\left( {cmt} \right)\\AH \subset \left( {SAI} \right)\end{array} \right.\) \( \Rightarrow BC \bot AH\)

Từ đó \(\left\{ \begin{array}{l}AH \bot BC\\AH \bot SI\\BC \cap SI = \left\{ I \right\}\end{array} \right.\) \( \Rightarrow AH \bot \left( {SBC} \right)\) tại \(H.\)

Suy ra \(d\left( {A;\left( {SBC} \right)} \right) = AH\)

Vì \(\Delta ABC\) vuông cân tại \(A\) nên \(AI = \frac{1}{2}BC\) \( = \frac{1}{2}\sqrt {A{B^2} + A{C^2}} \) \( = \frac{1}{2}\sqrt {{a^2} + {a^2}}  = \frac{{a\sqrt 2 }}{2}\)

Xét tam giác \(SAI\) vuông tại \(A\), ta có: \(\frac{1}{{A{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{I^2}}}\) \( = \frac{1}{{{a^2}}} + \frac{1}{{{{\left( {\frac{{a\sqrt 2 }}{2}} \right)}^2}}} = \frac{3}{{{a^2}}}\)

\( \Rightarrow AH = \frac{a}{{\sqrt 3 }}\)

Suy ra \(d\left( {E;\left( {SBC} \right)} \right) = d\left( {A;\left( {SBC} \right)} \right)\)\( = AH = \frac{a}{{\sqrt 3 }}\)

Vậy \(d\left( {E;\left( {SBC} \right)} \right) = \frac{a}{{\sqrt 3 }}\).

HẾT

Xemloigiai.com

Xem thêm lời giải Đề thi, đề kiểm tra Toán lớp 11

Dưới đây là danh sách Đề thi, đề kiểm tra Toán lớp 11 chọn lọc, có đáp án, cực sát đề chính thức theo nội dung sách giáo khoa Lớp 11.

Đề thi giữa kì 1 Toán 11

Đề thi học kì 1 Toán 11

Đề thi giữa kì 2 Toán 11

Đề thi học kì 2 Toán 11

Đề kiểm tra 15 phút Toán 11

Đề kiểm tra 1 tiết Toán 11

Lớp 11 | Các môn học Lớp 11 | Giải bài tập, đề kiểm tra, đề thi Lớp 11 chọn lọc

Danh sách các môn học Lớp 11 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.