Giải mục 1 trang 78, 79 SGK Toán 10 tập 1 - Kết nối tri thức

Tính trung bình cộng điểm khảo sát tiếng Anh của mỗi lớp A và B. Dựa trên điểm trung bình, hãy cho biết phương pháp học tập nào hiệu quả hơn. Bảng sau cho biết thời gian chạy cự li 100 m của các bạn trong lớp (đơn vị giây): Một công ty nhỏ gồm 1 giám đốc và 5 nhân viên, thu nhập mỗi tháng của giám đốc là 20 triệu đồng, của nhân viên là 4 triệu đồng. Chiều dài (đơn vị feet) của 7 con cá voi trưởng thành được cho như sau:

Bài làm:

HĐ1

Tính trung bình cộng điểm khảo sát tiếng Anh của mỗi lớp A và B.

Phương pháp giải:

Công thức tính trung bình cộng:

\(\overline X =\frac{\text{Tổng điểm cả lớp}}{\text{Số học sinh}}\)

Lời giải chi tiết:

Tổng điểm cả lớp A là 148

Tổng điểm cả lớp B là 157

Trung bình cộng lớp A:

\(\overline {{X_A}}  = \frac{{148}}{{25}} = 5,92\)

Trung bình cộng lớp B:

\(\overline {{X_B}}  = \frac{{157}}{{25}} = 6,28\)

Vậy trung bình cộng điểm tiếng Anh lớp A là 5,92 và lớp B là 6,28.

Chú ý

Cần cẩn thận khi tính tổng điểm, có thể bị nhầm dẫn đến kết quả sai.


HĐ2

Dựa trên điểm trung bình, hãy cho biết phương pháp học tập nào hiệu quả hơn.

Phương pháp giải:

Điểm trung bình của lớp nào cao hơn thì phương pháp học tập tương ứng với lớp đó hiệu quả hơn.

Lời giải chi tiết:

Ta thấy điểm trung bình tiếng Anh của lớp B cao hơn nên phương pháp học tập áp dụng với lớp B tốt hơn.


Luyện tập 1

Bảng sau cho biết thời gian chạy cự li 100 m của các bạn trong lớp (đơn vị giây):

Thời gian

12

13

14

15

16

Số bạn

5

7

10

8

6

Hãy tính thời gian chạy trung bình cự li 100 m của các bạn trong lớp.

Phương pháp giải:

Bước 1: Xác định n và các giá trị \(x{ & _i}\), \(i = 1;2;...;n\)

Bước 2: Áp dụng công thức số trung bình của mẫu số liệu \({x_1},{x_2},...,{x_n}\):

\(\bar X = \frac{{{m_1}{x_1} + {m_2}{x_2} + ... + {m_n}{x_n}}}{n}\)

Lời giải chi tiết:

Số bạn trong lớp là \(n = 5 + 7 + 10 + 8 + 6 = 36\)

Thời gian chạy trung bình cự li 100 m của các bạn trong lớp là

\(\bar X = \frac{{5.12 + 7.13 + 10.14 + 8.15 + 6.16}}{{36}}\)

Chú ý

Bài toán này cho dưới dạng bảng tần số nên cần tính theo công thức trên.


HĐ3

Một công ty nhỏ gồm 1 giám đốc và 5 nhân viên, thu nhập mỗi tháng của giám đốc là 20 triệu đồng, của nhân viên là 4 triệu đồng.

a) Tính thu nhập trung bình của các thành viên trong công ty.

b) Thu nhập trung bình có phản ánh đúng thu nhập của nhân viên công ty không?

Phương pháp giải:

a) Thu nhập trung bình của các thành viên bằng tổng thu nhập của 6 người và chia cho 6.

b) Nhận xét sự chênh lệch về thu nhập của mỗi thành viên so với thu nhập trung bình.

Lời giải chi tiết:

a) Thu nhập trung bình của thành viên trong công ty là

\(\bar X = \frac{{20.1 + 4.5}}{6} = \frac{{40}}{6} \approx 6,67\)

Vậy thu nhập trung bình của các thành viên là 6,67 triệu đồng.

b) Ta thấy rõ ràng thu nhập của giám đốc cao hơn thu nhập trung bình rất nhiều (khoảng 13,3 triệu), còn thu nhập của mỗi nhân viên thì gần với thu nhập trung bình hơn (khoảng 2,67 triệu). Như thế, thu nhập trung bình không phản ánh đúng thu nhập của nhân viên công ty.

Chú ý

Công ty có 6 người thì cần tính thu nhập trung bình của 6 người.


Luyện tập 2

Chiều dài (đơn vị feet) của 7 con cá voi trưởng thành được cho như sau:

48     53     51    31      53     112     52

Tìm số trung bình và trung vị của mẫu số liệu trên. Trong hai số đó, số nào phù hợp hơn để đại diện cho chiều dài của 7 con cá voi trưởng thành này?

Phương pháp giải:

- Áp dụng công thức số trung bình của mẫu số liệu \({x_1},{x_2},...,{x_n}\):

\(\bar X = \frac{{{x_1} + {x_2} + ... + {x_n}}}{n}\)

- Số trung vị

+ Sắp xếp lại số liệu theo thứ tự không giảm.

+ Nếu số giá trị của mẫu số liệu là số lẻ thì giá trị chính giữa của mẫu là trung vị. Nếu là số chẵn thì trung vị là trung bình cộng của hai giá trị chính giữa của mẫu.

- Trong trường hợp mẫu số liệu có giá trị bất thường (rất lớn hoặc rất bé so với đa số các giá trị khác), người ta không dùng số trung bình để đo xu thế trung tâm mà dùng trung vị.

Lời giải chi tiết:

Số trung bình: \(\bar X = \frac{{48 + 53 + 51 + 31 + 53 + 112 + 52}}{7}\)\( = \frac{{400}}{7} \approx 57,14\)

Số trung vị:

Ta sắp xếp lại số liệu theo thứ tự không giảm:

31   48   51   52   53   53   112

Số giá trị là 7, là số lẻ nên giá trị chính giữa của mẫu là trung vị. Mà giá trị chính giữa là 52.

Vậy số trung vị là 52.

Ta thấy trong mẫu số liệu bài cho thì 112 cao hơn hẳn giá trị trung bình nên không thể dùng số trung bình để đại diện cho chiều dài của 7 con cá voi trưởng thành này.

Vậy ta dùng số trung vị để đại diện cho chiều dài của 7 con cá voi trưởng thành này.

Xem thêm lời giải SGK Toán 10 - Kết nối tri thức

Để học tốt SGK Toán 10 - Kết nối tri thức, loạt bài giải bài tập SGK Toán 10 - Kết nối tri thức đầy đủ kiến thức, lý thuyết và bài tập được biên soạn bám sát theo nội dung sách giáo khoa Lớp 10.

Giải Toán 10 tập 1 - Kết nối tri thức

Giải Toán 10 tập 2 - Kết nối tri thức

Chương I. Mệnh đề và tập hợp

Chương II. Bất phương trình và hệ bất phương trình bậc nhất hai ẩn

Chương III. Hệ thức lượng trong tam giác

Chương IV. Vectơ

Chương V. Các số đặc trưng của mẫu số liệu không ghép nhóm

Hoạt động thực hành trải nghiệm

Chương VI. Hàm số, đồ thị và ứng dụng

Chương VII. Phương pháp tọa độ trong mặt phẳng

Chương VIII. Đại số tổ hợp

Chương IX. Tính xác suất theo định nghĩa cổ điển

Lớp 10 | Các môn học Lớp 10 | Giải bài tập, đề kiểm tra, đề thi Lớp 10 chọn lọc

Danh sách các môn học Lớp 10 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.

Toán Học

Vật Lý

Hóa Học

Ngữ Văn

Lịch Sử

Địa Lý

Sinh Học

GDCD

Tin Học

Tiếng Anh

Công Nghệ

Âm Nhạc & Mỹ Thuật

Hoạt động trải nghiệm