Giải mục 3 trang 8, 9 SGK Toán 10 tập 1 - Kết nối tri thức

Cặp từ quan hệ nào sau đây phù hợp với vị trí bị che khuất trong câu ghép ở hình bên? Cho hai câu sau: P: “Tam giác ABC là tam giác vuông tại A” Xét hai câu sau: P: “Phương trình bậc hai ax^2 + bx + c = 0 có hai nghiệm phân biệt” Cho các mệnh đề P: “a và b chia hết cho c”

Bài làm:

HĐ3

Cặp từ quan hệ nào sau đây phù hợp với vị trí bị che khuất trong câu ghép ở hình bên?

A. Nếu … thì …

B. Tuy … nhưng …

Lời giải chi tiết:

Chọn A. Nếu … thì …

Nếu sử dụng rượu bia khi tham gia giao thông thì có thể bị xử phạt hành chính hoặc xử lí hình sự tùy theo mức độ vi phạm.


HĐ4

Cho hai câu sau:

P: “Tam giác ABC là tam giác vuông tại A”;

Q: “Tam giác ABC có \(A{B^2} + A{C^2} = B{C^2}\)”.

Hãy phát biểu câu ghép có dạng “Nếu P thì Q”. 

Phương pháp giải:

Thay P, Q lần lượt bởi nội dung mệnh đề của nó.

Lời giải chi tiết:

Phát biểu câu ghép "Nếu P thì Q" là: “Nếu tam giác ABC là tam giác vuông tại A thì tam giác ABC có \(A{B^2} + A{C^2} = B{C^2}\).”


HĐ5

Xét hai câu sau:

P: “Phương trình bậc hai \(a{x^2} + bx + c = 0\) có hai nghiệm phân biệt”;

Q: “Phương trình bậc hai \(a{x^2} + bx + c = 0\) có biệt thức \(\Delta  = {b^2} - 4ac\;\, > 0\)”.

a) Hãy phát biểu mệnh đề \(P \Rightarrow Q\).

b) Hãy phát biểu mệnh đề \(Q \Rightarrow P\).

Phương pháp giải:

Mệnh đề \(P \Rightarrow Q\) thường phát biểu ở dạng: “Nếu P thì Q”, “P suy ra Q”, “Vì P nên Q”.

Mệnh đề \(Q \Rightarrow P\) thường phát biểu ở dạng: “Nếu Q thì P”, “Q suy ra P”, “Vì Q nên P”.

Thay P, Q lần lượt bởi nội dung mệnh đề vào câu ghép.

Lời giải chi tiết:

Mệnh đề \(P \Rightarrow Q\): “Nếu phương trình bậc hai \(a{x^2} + bx + c = 0\) có hai nghiệm phân biệt thì phương trình bậc hai \(a{x^2} + bx + c = 0\) có biệt thức \(\Delta  = {b^2} - 4ac\;\, > 0\).”

Mệnh đề \(Q \Rightarrow P\): “Nếu phương trình bậc hai \(a{x^2} + bx + c = 0\) có biệt thức \(\Delta  = {b^2} - 4ac\;\, > 0\) thì phương trình bậc hai \(a{x^2} + bx + c = 0\) có hai nghiệm phân biệt.”


Luyện tập 3

Cho các mệnh đề

P: “a và b chia hết cho c”;

Q: “a + b chia hết cho c”.

a) Hãy phát biểu định lí \(P \Rightarrow Q\). Nêu giả thiết, kết luận của định lí và phát biểu định lí này dưới dạng điều kiện cần, điều kiện đủ.

b) Hãy phát biểu mệnh đề đảo của mệnh đề \(P \Rightarrow Q\) rồi xác định tính đúng sai của mệnh đề đảo này.

Phương pháp giải:

Nếu một mệnh đề đúng có dạng \(P \Rightarrow Q\) đúng, ta nói: P là giả thiết, Q là kết luận hoặc “P là điều kiện cần để có Q” hoặc “Q là điều kiện cần để có P”.

Mệnh đề đảo của mệnh đề \(P \Rightarrow Q\) là mệnh đề \(Q \Rightarrow P\).

Lời giải chi tiết:

a) Mệnh đề \(P \Rightarrow Q\), phát biểu là: “Nếu a và b chia hết cho c thì a + b chia hết cho c.”

Mệnh đề này đúng nên nó là một định lý.

Giả thiết của định lí: a và b chia hết cho c

Kết luận của định lí: a + b chia hết cho c

Phát biểu định lí dưới dạng điều kiện cần là: “ a + b chia hết cho c là điều kiện cần để có a và b chia hết cho c”

Phát biểu định lí dưới dạng điều kiện đủ là: “ a và b chia hết cho c là điều kiện đủ để có a + b chia hết cho c”

b) Mệnh đề đảo của mệnh đề \(P \Rightarrow Q\) là mệnh đề \(Q \Rightarrow P\).

Mệnh đề \(Q \Rightarrow P\): “Nếu a + b chia hết cho c thì a và b chia hết cho c”

Mệnh đề này sai.

Chẳng hạn a = 1 và b = 2, c =3. Ta có: \(1 + 2 = 3\; \vdots \;3\), nhưng 1 và 2 không chia hết cho 3.

Xem thêm lời giải SGK Toán 10 - Kết nối tri thức

Để học tốt SGK Toán 10 - Kết nối tri thức, loạt bài giải bài tập SGK Toán 10 - Kết nối tri thức đầy đủ kiến thức, lý thuyết và bài tập được biên soạn bám sát theo nội dung sách giáo khoa Lớp 10.

Giải Toán 10 tập 1 - Kết nối tri thức

Giải Toán 10 tập 2 - Kết nối tri thức

Chương I. Mệnh đề và tập hợp

Chương II. Bất phương trình và hệ bất phương trình bậc nhất hai ẩn

Chương III. Hệ thức lượng trong tam giác

Chương IV. Vectơ

Chương V. Các số đặc trưng của mẫu số liệu không ghép nhóm

Hoạt động thực hành trải nghiệm

Chương VI. Hàm số, đồ thị và ứng dụng

Chương VII. Phương pháp tọa độ trong mặt phẳng

Chương VIII. Đại số tổ hợp

Chương IX. Tính xác suất theo định nghĩa cổ điển

Lớp 10 | Các môn học Lớp 10 | Giải bài tập, đề kiểm tra, đề thi Lớp 10 chọn lọc

Danh sách các môn học Lớp 10 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.

Toán Học

Vật Lý

Hóa Học

Ngữ Văn

Lịch Sử

Địa Lý

Sinh Học

GDCD

Tin Học

Tiếng Anh

Công Nghệ

Âm Nhạc & Mỹ Thuật

Hoạt động trải nghiệm