Giải mục II trang 75, 76 SGK Toán 10 tập 2 - Cánh diều

Cho đường thẳng có phương trình tổng quát ax + bx + c = 0 (a hoặc b khác 0). Nêu nhận xét về vị trí tương đối của đường thẳng với các trục toạ độ trong môi trường hợp sau:

Bài làm:

Hoạt động 3

Trong mặt phẳng toạ độ Oxy, cho đường thẳng \(\Delta \). Vẽ vectơ \(\overrightarrow n \) (\(\overrightarrow n  \ne \overrightarrow 0 \)) có giá vuông góc với đường thẳng \(\Delta \).

Lời giải chi tiết:

Nhận xét

• Nếu \(\overrightarrow n \) là một vectơ pháp tuyến của \(\Delta \) thì \(k\overrightarrow n  \ne \overrightarrow 0 \left( {k \ne 0} \right)\)cũng là một vectơ pháp tuyến của \(\Delta \).

• Một đường thẳng hoàn toàn được xác định khi biết một điểm và một vectơ pháp tuyến của đường thẳng đó.

• Nếu đường thẳng \(\Delta \) có vectơ chỉ phương là \(\overrightarrow u  = \left( {a;b} \right)\) thì vectơ \(\overrightarrow n  = \left( { - b;a} \right)\)là một vectơ pháp tuyến của \(\Delta \).


Hoạt động 4

Trong mặt phẳng toạ độ Oxy, cho đường thẳng \(\Delta \) đi qua điểm \({M_o}\left( {{x_o};{y_o}} \right)\) và có vectơ pháp tuyến \(\overrightarrow n {\rm{ }} = \left( {a;{\rm{ }}b} \right)\). Xét điểm M(x ; y) nằm trên \(\Delta \) (Hình 28).

a) Nhận xét về phương của hai vectơ \(\overrightarrow n \) và \(\overrightarrow {{M_o}M} \).

b) Tìm mối liên hệ giữa toạ độ của điểm M với toạ độ của điểm \({M_o}\) và toạ độ của vectơ pháp tuyến \(\overrightarrow n \).

Lời giải chi tiết:

a) Phương của hai vecto \(\overrightarrow n \) và \(\overrightarrow {{M_o}M} \) vuông góc với nhau.

b) Ta có: \(\overrightarrow {{M_o}M}  = \left( {x - {x_o};y - {y_o}} \right),\overrightarrow u  = \left( {a;b} \right)\)

Xét điểm \(M\left( {x;y} \right) \in \Delta \). Vì \(\overrightarrow {{M_o}M}  \bot \overrightarrow n \) nên: \(\overrightarrow {{M_o}M} .\overrightarrow n  = 0 \Leftrightarrow a\left( {x - {x_o}} \right) + b\left( {y - {y_o}} \right) = 0 \Leftrightarrow ax + by - a{x_o} + b{y_o} = 0\) 


Luyện tập – vận dụng 2

Cho đường thẳng \(\Delta \) có phương trình tổng quát là\(x{\rm{ }}--{\rm{ }}y{\rm{ }} + {\rm{ }}1{\rm{ }} = {\rm{ }}0\) .

a) Chỉ ra toạ độ của một vectơ pháp tuyến và một vectơ chỉ phương của \(\Delta \).

b) Chỉ ra toạ độ của hai điểm thuộc \(\Delta \).

Lời giải chi tiết:

a) Tọa độ vecto pháp tuyến của \(\Delta \) là:  

Tọa độ vecto chỉ phương của \(\Delta \) là:

b) Chọn \(x = 0;x = 1\) ta lần được được 2 điểm A và B thuộc đường thẳng \(\Delta \) là: \(A\left( {0;1} \right),B\left( {1;2} \right)\)


Hoạt động 5

Cho đường thẳng \(\Delta \) có phương trình tổng quát ax + bx + c = 0 (a hoặc b khác 0). Nêu nhận xét về vị trí tương đối của đường thẳng \(\Delta \) với các trục toạ độ trong môi trường hợp sau:

a) b = 0 và \(a \ne 0\)

b) \(b \ne 0\) và a = 0

c) \(b \ne 0\)\(a \ne 0\)

Lời giải chi tiết:

a) Nếu  b = 0 và \(a \ne 0\) thì phương trình đường thẳng \(\Delta \) trở thành \(ax + c = 0\) . Khi đó đường thẳng \(\Delta \) song song hoặc trùng với trục \(Oy\) và cắt trục \({\rm{O}}x\) tại điểm \(\left( { - \frac{c}{a};0} \right)\).

b) \(b \ne 0\) và a = 0 thì phương trình đường thẳng \(\Delta \) trở thành \(by + c = 0\) . Khi đó đường thẳng \(\Delta \) song song hoặc trùng với trục \({\rm{O}}x\) và cắt trục \(Oy\) tại điểm \(\left( {0; - \frac{c}{b}} \right)\).

c) Nếu \(b \ne 0\)\(a \ne 0\)thì phương trình đường thẳng \(\Delta \) có thể viết thành \(y =  - \frac{a}{b}x - \frac{c}{b}\). Khi đó, đường thẳng \(\Delta \) là đồ thị hàm số bậc nhất \(y =  - \frac{a}{b}x - \frac{c}{b}\)vời hệ số góc là \(k =  - \frac{a}{b}\).

Xem thêm lời giải SGK Toán 10 - Cánh diều

Để học tốt SGK Toán 10 - Cánh diều, loạt bài giải bài tập SGK Toán 10 - Cánh diều đầy đủ kiến thức, lý thuyết và bài tập được biên soạn bám sát theo nội dung sách giáo khoa Lớp 10.

Giải Toán 10 tập 1 - Cánh diều

Giải Toán 10 tập 2 - Cánh diều

Chương I. Mệnh đề toán học. Tập hợp

Chương II. Bất phương trình và hệ bất phương trình bậc nhất hai ẩn

Chương III. Hàm số và đồ thị

Chương IV. Hệ thức lượng trong tam giác. Vectơ

Chương V. Đại số tổ hợp

Chương VI. Một số yếu tố thống kê và xác suất

Chương VII. Phương pháp tọa độ trong mặt phẳng

Lớp 10 | Các môn học Lớp 10 | Giải bài tập, đề kiểm tra, đề thi Lớp 10 chọn lọc

Danh sách các môn học Lớp 10 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.

Toán Học

Vật Lý

Hóa Học

Ngữ Văn

Lịch Sử

Địa Lý

Sinh Học

GDCD

Tin Học

Tiếng Anh

Công Nghệ

Âm Nhạc & Mỹ Thuật

Hoạt động trải nghiệm