Phần câu hỏi bài 4 trang 56, 57 Vở bài tập toán 8 tập 1
Bài làm:
Câu 13.
Khi quy đồng mẫu thức hai phân thức \(\dfrac{1}{{4{x^3}y}}\) và \(\dfrac{2}{{6{x^2}{y^2}}}\) ta được mẫu thức chung là biểu thức :
\(\begin{array}{l}(A)\,\,10\left( {{x^3}y + {x^2}{y^2}} \right)\\(B)\,\,10{x^2}y\\(C)\,\,12{x^3}{y^2}\\(D)\,\,6{x^3}y\end{array}\)
Phương pháp giải:
- Phân tích mẫu thức của các phân thức đã cho thành nhân tử.
- Mẫu thức chung cần tìm là một tích mà các nhân tử được chọn như sau:
+ Nhân tử bằng số của mẫu thức chung là tích các nhân tử bằng số ở các mẫu thức của các phân thức đã học. (Nếu các nhân tử bằng số ở các mẫu thức là những số nguyên dương thì nhân tử bằng số của mẫu thức chung là BCNN của chúng).
+ Với mỗi cơ số của luỹ thừa có mặt trong các mẫu thức ta chọn luỹ thừa với số mũ cao nhất.
Lời giải chi tiết:
Ta có:
\(\begin{array}{l}4{x^3}y = {2^2}{x^3}y\\6{x^2}{y^2} = 2.3{x^2}{y^2}\\MTC = {2^2}.3.{x^3}{y^2} = 12{x^3}{y^2}\end{array}\)
Chọn C.
Câu 14.
Khi quy đồng mẫu thức \(\dfrac{1}{{4{x^2}y + 4{x^2}z}}\) và \(\dfrac{3}{{10x{{\left( {y + z} \right)}^2}}}\) ta được mẫu thức chung là biểu thức
\(\begin{array}{l}(A)\,\,14\left( {{x^3}{y^2} + {x^3}{z^2}} \right)\\(B)\,\,20{x^2}{\left( {y + z} \right)^2}\\(C)\,\,2x\left( {x + y} \right)\\(D)\,\,20{x^2}\left( {{y^2} + {z^2}} \right)\end{array}\)
Phương pháp giải:
- Phân tích mẫu thức của các phân thức đã cho thành nhân tử.
- Mẫu thức chung cần tìm là một tích mà các nhân tử được chọn như sau:
+ Nhân tử bằng số của mẫu thức chung là tích các nhân tử bằng số ở các mẫu thức của các phân thức đã học. (Nếu các nhân tử bằng số ở các mẫu thức là những số nguyên dương thì nhân tử bằng số của mẫu thức chung là BCNN của chúng).
+ Với mỗi cơ số của luỹ thừa có mặt trong các mẫu thức ta chọn luỹ thừa với số mũ cao nhất.
Lời giải chi tiết:
Ta có:
\(\begin{array}{l}+)\,4{x^2}y + 4{x^2}z = 4{x^2}\left( {y + z} \right) \\= {2^2}.{x^2}\left( {y + z} \right)\\+)\,10x{\left( {y + z} \right)^2} = 2.5.x{\left( {y + z} \right)^2}\\ \Rightarrow MTC = {2^2}.5.{x^2}.{\left( {y + z} \right)^2}\\= 20{x^2}{\left( {y + z} \right)^2}\end{array}\)
Chọn B.
Câu 15.
Khi quy đồng mẫu thức hai phân thức \(\dfrac{1}{{4x}}\) và \(\dfrac{2}{{6y}}\) ta được những phân thức
\((A)\,\,\dfrac{1}{{4x + 6y}}\) và \(\dfrac{2}{{4x + 6y}}\)
\((B)\,\,\dfrac{{6y}}{{4x + 6y}}\) và \(\dfrac{{8x}}{{4x + 6y}}\)
\((C)\,\,\dfrac{y}{{12xy}}\) và \(\dfrac{{2x}}{{12xy}}\)
\((D)\,\,\dfrac{{3y}}{{12xy}}\) và \(\dfrac{{4x}}{{12xy}}\)
Phương pháp giải:
Muốn quy đồng mẫu thức nhiều phân thức ta có thể làm như sau:
- Phân tích các mẫu thức thành nhân tử rồi tìm mẫu thức chung.
- Tìm nhân tử phụ của mỗi mẫu thức.
- Nhân tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng.
Lời giải chi tiết:
Ta có:
\(\begin{array}{l}4x = {2^2}.x\\6y = 2.3.y\\ \Rightarrow MTC = {2^2}.3.x.y = 12xy\end{array}\)
Nhân tử phụ của mẫu thức thứ nhất là \(3y\)
Nhân tử phụ của mẫu thức thứ hai là \(2x\)
Quy đồng mẫu thức ta được:
\(\begin{array}{l}\dfrac{1}{{4x}} = \dfrac{{1.3y}}{{4x.3y}} = \dfrac{{3y}}{{12xy}}\\\dfrac{2}{{6y}} = \dfrac{{2.2x}}{{6y.2x}} = \dfrac{{4x}}{{12xy}}\end{array}\)
Chọn D.
Câu 16.
Khi quy đồng mẫu thức hai phân thức \(\dfrac{1}{{12{x^3}\left( {x + y} \right)}}\) và \(\dfrac{2}{{9{x^2}{{\left( {x + y} \right)}^2}}}\)
Ta được những phân thức
\((A)\,\,\dfrac{1}{{21\left( {x + y} \right)\left( {2x + y} \right)}}\) và \(\dfrac{2}{{21{x^2}\left( {x + y} \right)\left( {2x + y} \right)}}\)
\((B)\,\,\dfrac{{3\left( {x + y} \right)}}{{36{x^3}{{\left( {x + y} \right)}^2}}}\) và \(\dfrac{{8x}}{{36{x^3}{{\left( {x + y} \right)}^2}}}\)
\((C)\,\,\dfrac{{1 + 9\left( {x + y} \right)}}{{21{x^2}\left( {x + y} \right)\left( {2x + y} \right)}}\) và \(\dfrac{{2 + 4x}}{{21{x^2}\left( {x + y} \right)\left( {2x + y} \right)}}\)
\((D)\,\,\dfrac{{1 + 3\left( {x + y} \right)}}{{36{x^3}{{\left( {x + y} \right)}^2}}}\) và \(\dfrac{{2 + 4x}}{{36{x^3}{{\left( {x + y} \right)}^2}}}\)
Phương pháp giải:
Muốn quy đồng mẫu thức nhiều phân thức ta có thể làm như sau:
- Phân tích các mẫu thức thành nhân tử rồi tìm mẫu thức chung.
- Tìm nhân tử phụ của mỗi mẫu thức.
- Nhân tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng.
Lời giải chi tiết:
Ta có:
\(\begin{array}{l}12{x^3}\left( {x + y} \right) = {2^2}.3.{x^3}\left( {x + y} \right)\\9{x^2}{\left( {x + y} \right)^2} = {3^2}.{x^2}{\left( {x + y} \right)^2}\\ \Rightarrow MTC = {2^2}{.3^2}.{x^3}.{\left( {x + y} \right)^2} \\= 36{x^3}{\left( {x + y} \right)^2}\end{array}\)
- Nhân tử phụ của mẫu thức thứ nhất là: \(3\left( {x + y} \right)\)
- Nhân tử phụ của mẫu thức thứ hai là: \(4x\)
\(\begin{array}{l}\dfrac{1}{{12{x^3}\left( {x + y} \right)}} = \dfrac{{3\left( {x + y} \right)}}{{36{x^3}{{\left( {x + y} \right)}^2}}}\\\dfrac{2}{{9{x^2}{{\left( {x + y} \right)}^2}}} = \dfrac{{2.4x}}{{9{x^2}{{\left( {x + y} \right)}^2}.4x}} \\= \dfrac{{8x}}{{36{x^3}{{\left( {x + y} \right)}^2}}}\end{array}\)
Chọn B.
Xemloigiai.com
Xem thêm Bài tập & Lời giải
Trong bài: Bài 4. Quy đồng mẫu thức nhiều phân thức
Xem thêm lời giải Vở bài tập Toán 8
PHẦN ĐẠI SỐ - VỞ BÀI TẬP TOÁN 8 TẬP 1
PHẦN HÌNH HỌC - VỞ BÀI TẬP TOÁN 8 TẬP 1
PHẦN ĐẠI SỐ - VỞ BÀI TẬP TOÁN 8 TẬP 2
PHẦN HÌNH HỌC - VỞ BÀI TẬP TOÁN 8 TẬP 2
Lớp 8 | Các môn học Lớp 8 | Giải bài tập, đề kiểm tra, đề thi Lớp 8 chọn lọc
Danh sách các môn học Lớp 8 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.
Bài soạn văn lớp 12 siêu ngắn
Toán Học
- Đề thi, đề kiểm tra Toán lớp 8
- Tài liệu Dạy - học Toán 8
- SBT Toán lớp 8
- Vở bài tập Toán 8
- SGK Toán lớp 8
Vật Lý
Hóa Học
- Đề thi, đề kiểm tra Hóa lớp 8
- Tài liệu Dạy - học Hóa học 8
- SBT Hóa lớp 8
- SGK Hóa lớp 8
- Giải môn Hóa học lớp 8
Ngữ Văn
- Đề thi, đề kiểm tra Văn 8
- SBT Ngữ văn lớp 8
- Tác giả - Tác phẩm văn 8
- Văn mẫu lớp 8
- Vở bài tập Ngữ văn lớp 8
- Soạn văn 8 chi tiết
- Soạn văn 8 ngắn gọn
- Soạn văn 8 siêu ngắn
- Bài soạn văn lớp 8 siêu ngắn
- Bài soạn văn 8
- Bài văn mẫu 8
Lịch Sử
Địa Lý
Sinh Học
- Đề thi, đề kiểm tra Sinh lớp 8
- SBT Sinh lớp 8
- Vở bài tập Sinh học 8
- SGK Sinh lớp 8
- Giải môn Sinh học lớp 8
GDCD
Tin Học
Tiếng Anh
- Đề thi, đề kiểm tra Tiếng Anh 8 mới
- SGK Tiếng Anh lớp 8
- SBT Tiếng Anh lớp 8 mới
- Vở bài tập Tiếng Anh 8
- SGK Tiếng Anh lớp 8 Mới