Bài 1.14 trang 9 SBT giải tích 12

Giải bài 1.14 trang 9 sách bài tập giải tích 12.Phương trình nào sau đây có nghiệm duy nhất trên R?...

Đề bài

Phương trình nào sau đây có nghiệm duy nhất trên \(\mathbb{R}\)?

A. \(\left( {x - 5} \right)\left( {{x^2} - x - 12} \right) = 0\)

B. \( - {x^3} + {x^2} - 3x + 2 = 0\)

C. \({\sin ^2}x - 5\sin x + 4 = 0\)

D. \(\sin x - \cos x + 1 = 0\)

Phương pháp giải - Xem chi tiết

Loại đáp án, xét các đáp án bằng cách giải mỗi phương trình và suy ra số nghiệm.

Lời giải chi tiết

Đáp án A: \(\left( {x - 5} \right)\left( {{x^2} - x - 12} \right) = 0\)\( \Leftrightarrow \left[ \begin{array}{l}x - 5 = 0\\{x^2} - x - 12 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 5\\x =  - 3\\x = 4\end{array} \right.\) nên phương trình có \(3\) nghiệm.

Đáp án B: Xét hàm \(f\left( x \right) =  - {x^3} + {x^2} - 3x + 2 = 0\) có \(f'\left( x \right) =  - 3{x^2} + 2x - 3\) và \(\Delta ' = 1 - 9 =  - 8 < 0\) nên \(f'\left( x \right) < 0,\forall x \in \mathbb{R}\) hay hàm số \(f\left( x \right)\) nghịch biến trên \(\mathbb{R}\).

Mà \(f\left( 0 \right) = 2,f\left( 1 \right) =  - 1\) nên \(f\left( 0 \right).f\left( 1 \right) < 0\), hàm số \(f\left( x \right)\) liên tục trên \(\left[ {0;1} \right]\) nên phương trình có nghiệm \({x_0} \in \left( {0;1} \right)\).

Kết hợp với hàm số nghịch biến trên \(\mathbb{R}\) nên phương trình đã cho có nghiệm duy nhất trên \(\mathbb{R}\).

Chọn B.

Xemloigiai.com

Xem thêm lời giải SBT Toán lớp 12

Giải sách bài tập toán hình học và giải tích lớp 12. Giải chi tiết tất cả câu hỏi trong các chương và bài chi tiết trong SBT hình học và giải tích toán 12 cơ bản với cách giải nhanh và ngắn gọn nhất

Lớp 12 | Các môn học Lớp 12 | Giải bài tập, đề kiểm tra, đề thi Lớp 12 chọn lọc

Danh sách các môn học Lớp 12 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.