Bài 1.3 trang 8 SBT giải tích 12

Giải bài 1.3 trang 8 sách bài tập giải tích 12. Xét tính đơn điệu của các hàm số...

Bài làm:

Xét tính đơn điệu của các hàm số:

LG câu a

a) \(y = {{\sqrt x } \over {x + 100}}\)

Phương pháp giải:

- Tìm tập xác định.

- Tính \(y'\) và tìm nghiệm của \(y'=0\).

- Xét dấu của \(y'\) và kết luận khoảng đồng biến, nghịch biến của hàm số.

Lời giải chi tiết:

Ta có: \(y' = \dfrac{{\left( {\sqrt x } \right)'\left( {x + 100} \right) - \sqrt x .\left( {x + 100} \right)'}}{{{{\left( {x + 100} \right)}^2}}}\) \( = \dfrac{{\dfrac{{x + 100}}{{2\sqrt x }} - \sqrt x }}{{{{\left( {x + 100} \right)}^2}}} = \dfrac{{100 - x}}{{2\sqrt x {{\left( {x + 100} \right)}^2}}}\)

\(y' = 0 \Leftrightarrow x = 100\).

Bảng biến thiên:

Vậy hàm số đồng biến trên khoảng \((0; 100)\) và nghịch biến trên khoảng \((100; +∞)\)


LG câu b

b) \(y = {{{x^3}} \over {\sqrt {{x^2} - 6} }}\)

Phương pháp giải:

- Tìm tập xác định.

- Tính \(y'\) và tìm nghiệm của \(y'=0\).

- Xét dấu của \(y'\) và kết luận khoảng đồng biến, nghịch biến của hàm số.

Lời giải chi tiết:

TXĐ: \((-∞; -\sqrt 6 ) ∪ (\sqrt 6; +∞)\)

\(y' = {{2{x^2}({x^2} - 9)} \over {({x^2} - 6)\sqrt {{x^2} - 6} }}\) ;\(y' = 0 \Leftrightarrow x =  \pm 3\)

Bảng biến thiên:

Vậy hàm số đồng biến trên các khoảng \((-∞; -3), (3; +∞)\), nghịch biến trên các khoảng \((-3;-\sqrt 6 ), (\sqrt 6 ; 3)\).

Xemloigiai.com

Xem thêm lời giải SBT Toán lớp 12

Giải sách bài tập toán hình học và giải tích lớp 12. Giải chi tiết tất cả câu hỏi trong các chương và bài chi tiết trong SBT hình học và giải tích toán 12 cơ bản với cách giải nhanh và ngắn gọn nhất

Lớp 12 | Các môn học Lớp 12 | Giải bài tập, đề kiểm tra, đề thi Lớp 12 chọn lọc

Danh sách các môn học Lớp 12 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.