Bài 2.66 trang 133 SBT giải tích 12

Giải bài 2.66 trang 133 sách bài tập giải tích 12. Tính đạo hàm của các hàm số sau:...

Bài làm:

Tính đạo hàm của các hàm số sau:

LG a

\(\displaystyle y = \frac{1}{{{{(2 + 3x)}^2}}}\)

Phương pháp giải:

Sử dụng các công thức tính đạo hàm:

+) \(\displaystyle \left( {{u^n}} \right)' = n.{u^{n - 1}}.u'\)

+) \(\displaystyle \left( {{a^u}} \right)' = u'\ln a\)

+) \(\displaystyle \left( {{{\log }_a}u} \right)' = \frac{{u'}}{{u\ln a}}\)

+) \(\displaystyle \left( {uv} \right)' = u'v + uv'\)

+) \(\displaystyle \left( {\frac{u}{v}} \right)' = \frac{{u'v - uv'}}{{{v^2}}}\)

Lời giải chi tiết:

\(\displaystyle y = \frac{1}{{{{(2 + 3x)}^2}}} = {\left( {2 + 3x} \right)^{ - 2}}\)\(\displaystyle  \Rightarrow y' =  - 2\left( {2 + 3x} \right)'{\left( {2 + 3x} \right)^{ - 3}}\) \( =  - 2.3.{\left( {2 + 3x} \right)^{ - 2}}\) \(\displaystyle  =  - 6{(2 + 3x)^{ - 3}}\)


LG b

\(\displaystyle y = \sqrt[3]{{{{(3x - 2)}^2}}}\left( {x \ne \frac{2}{3}} \right)\)

Phương pháp giải:

Sử dụng các công thức tính đạo hàm:

+) \(\displaystyle \left( {{u^n}} \right)' = n.{u^{n - 1}}.u'\)

+) \(\displaystyle \left( {{a^u}} \right)' = u'\ln a\)

+) \(\displaystyle \left( {{{\log }_a}u} \right)' = \frac{{u'}}{{u\ln a}}\)

+) \(\displaystyle \left( {uv} \right)' = u'v + uv'\)

+) \(\displaystyle \left( {\frac{u}{v}} \right)' = \frac{{u'v - uv'}}{{{v^2}}}\)

Lời giải chi tiết:

 Với \(\displaystyle x > \frac{2}{3}\) thì \(\displaystyle y = {\left( {3x - 2} \right)^{\frac{2}{3}}}\) nên

\(\displaystyle y' = \frac{2}{3}\left( {3x - 2} \right)'.{\left( {3x - 2} \right)^{\frac{2}{3} - 1}}\) \( = \frac{2}{3}.3.{\left( {3x - 2} \right)^{ - \frac{1}{3}}}= 2{(3x - 2)^{ - \frac{1}{3}}} \) \(= 2.\frac{1}{{{{\left( {3x - 2} \right)}^{\frac{1}{3}}}}}= \frac{2}{{\sqrt[3]{{3x - 2}}}}\).

Với \(\displaystyle x < \frac{2}{3}\) thì \(\displaystyle y =  - {\left( {2 - 3x} \right)^{\frac{2}{3}}}\) nên

\(\displaystyle y' =  - \frac{2}{3}.\left( {2 - 3x} \right)'.{\left( {2 - 3x} \right)^{\frac{2}{3} - 1}} \) \(=  - \frac{2}{3}.3.{\left( {2 - 3x} \right)^{ - \frac{1}{3}}} \) \(=  - 2{\left( {2 - 3x} \right)^{ - \frac{1}{3}}} =  - 2.\frac{1}{{{{\left( {2 - 3x} \right)}^{\frac{1}{3}}}}}\) \(\displaystyle  = \frac{{ - 2}}{{\sqrt[3]{{2 - 3x}}}} = \frac{2}{{\sqrt[3]{{3x - 2}}}}\).

Vậy \(\displaystyle y' = \frac{2}{{\sqrt[3]{{3x - 2}}}}\left( {x \ne \frac{2}{3}} \right)\).


LG c

\(\displaystyle y = \frac{1}{{\sqrt[3]{{3x - 7}}}}\)

Phương pháp giải:

Sử dụng các công thức tính đạo hàm:

+) \(\displaystyle \left( {{u^n}} \right)' = n.{u^{n - 1}}.u'\)

+) \(\displaystyle \left( {{a^u}} \right)' = u'\ln a\)

+) \(\displaystyle \left( {{{\log }_a}u} \right)' = \frac{{u'}}{{u\ln a}}\)

+) \(\displaystyle \left( {uv} \right)' = u'v + uv'\)

+) \(\displaystyle \left( {\frac{u}{v}} \right)' = \frac{{u'v - uv'}}{{{v^2}}}\)

Lời giải chi tiết:

Với \(\displaystyle x > \frac{7}{3}\) thì \(\displaystyle y = \frac{1}{{\sqrt[3]{{3x - 7}}}} = {\left( {3x - 7} \right)^{ - \frac{1}{3}}}\) nên \(\displaystyle y' =  - \frac{1}{3}.3{\left( {3x - 7} \right)^{ - \frac{4}{3}}}\) \(\displaystyle  =  - {\left( {3x - 7} \right)^{ - \frac{4}{3}}} =  - \frac{1}{{\sqrt[3]{{{{\left( {3x - 7} \right)}^4}}}}}\)

Với \(\displaystyle x < \frac{7}{3}\) thì \(\displaystyle y = \frac{1}{{\sqrt[3]{{3x - 7}}}} =  - {\left( {7 - 3x} \right)^{ - \frac{1}{3}}}\) nên:

\(\displaystyle y' = \frac{1}{3}.\left( { - 3} \right){\left( {7 - 3x} \right)^{ - \frac{4}{3}}}\) \(\displaystyle  =  - {\left( {7 - 3x} \right)^{ - \frac{4}{3}}} =  - \frac{1}{{\sqrt[3]{{{{\left( {7 - 3x} \right)}^4}}}}}\)\(\displaystyle  =  - \frac{1}{{\sqrt[3]{{{{\left( {3x - 7} \right)}^4}}}}}\)

Vậy \(\displaystyle y' =  - \frac{1}{{\sqrt[3]{{{{(3x - 7)}^4}}}}}\)


LG d

\(\displaystyle y = 3{x^{ - 3}} - {\log _3}x\)

Phương pháp giải:

Sử dụng các công thức tính đạo hàm:

+) \(\displaystyle \left( {{u^n}} \right)' = n.{u^{n - 1}}.u'\)

+) \(\displaystyle \left( {{a^u}} \right)' = u'\ln a\)

+) \(\displaystyle \left( {{{\log }_a}u} \right)' = \frac{{u'}}{{u\ln a}}\)

+) \(\displaystyle \left( {uv} \right)' = u'v + uv'\)

+) \(\displaystyle \left( {\frac{u}{v}} \right)' = \frac{{u'v - uv'}}{{{v^2}}}\)

Lời giải chi tiết:

\(\displaystyle y = 3{x^{ - 3}} - {\log _3}x\) \(\displaystyle  \Rightarrow y' = 3.\left( { - 3} \right).{x^{ - 4}} - \frac{1}{{x\ln 3}}\) \(\displaystyle  =  - 9{x^{ - 4}} - \frac{1}{{x\ln 3}}\)


LG e

\(\displaystyle y = (3{x^2} - 2){\log _2}x\)

Phương pháp giải:

Sử dụng các công thức tính đạo hàm:

+) \(\displaystyle \left( {{u^n}} \right)' = n.{u^{n - 1}}.u'\)

+) \(\displaystyle \left( {{a^u}} \right)' = u'\ln a\)

+) \(\displaystyle \left( {{{\log }_a}u} \right)' = \frac{{u'}}{{u\ln a}}\)

+) \(\displaystyle \left( {uv} \right)' = u'v + uv'\)

+) \(\displaystyle \left( {\frac{u}{v}} \right)' = \frac{{u'v - uv'}}{{{v^2}}}\)

Lời giải chi tiết:

\(\displaystyle y = (3{x^2} - 2){\log _2}x\)

\(\displaystyle  \Rightarrow y'  = \left( {3{x^2} - 2} \right)'{\log _2}x + \left( {3{x^2} - 2} \right)\left( {{{\log }_2}x} \right)'\) \(= 6x{\log _2}x + \left( {3{x^2} - 2} \right).\frac{1}{{x\ln 2}}\) \(\displaystyle  = 6x{\log _2}x + \frac{{3{x^2} - 2}}{{x\ln 2}}\)


LG g

\(\displaystyle y = \ln (\cos x)\)

Phương pháp giải:

Sử dụng các công thức tính đạo hàm:

+) \(\displaystyle \left( {{u^n}} \right)' = n.{u^{n - 1}}.u'\)

+) \(\displaystyle \left( {{a^u}} \right)' = u'\ln a\)

+) \(\displaystyle \left( {{{\log }_a}u} \right)' = \frac{{u'}}{{u\ln a}}\)

+) \(\displaystyle \left( {uv} \right)' = u'v + uv'\)

+) \(\displaystyle \left( {\frac{u}{v}} \right)' = \frac{{u'v - uv'}}{{{v^2}}}\)

Lời giải chi tiết:

\(\displaystyle y = \ln (\cos x)\)\(\displaystyle  \Rightarrow y' = \frac{{\left( {\cos x} \right)'}}{{\cos x}}\) \(\displaystyle  =  - \frac{{\sin x}}{{\cos x}} =  - \tan x\)


LG h

\(\displaystyle y = {e^x}\sin x\)

Phương pháp giải:

Sử dụng các công thức tính đạo hàm:

+) \(\displaystyle \left( {{u^n}} \right)' = n.{u^{n - 1}}.u'\)

+) \(\displaystyle \left( {{a^u}} \right)' = u'\ln a\)

+) \(\displaystyle \left( {{{\log }_a}u} \right)' = \frac{{u'}}{{u\ln a}}\)

+) \(\displaystyle \left( {uv} \right)' = u'v + uv'\)

+) \(\displaystyle \left( {\frac{u}{v}} \right)' = \frac{{u'v - uv'}}{{{v^2}}}\)

Lời giải chi tiết:

\(\displaystyle y = {e^x}\sin x\)

\(\displaystyle  \Rightarrow y'  = \left( {{e^x}} \right)'\sin x + {e^x}\left( {\sin x} \right)'\) \(= {e^x}\sin x + {e^x}\cos x\) \(\displaystyle  = {e^x}(\sin x + \cos x)\)


LG i

\(\displaystyle y = \frac{{{e^x} - {e^{ - x}}}}{x}\)

Phương pháp giải:

Sử dụng các công thức tính đạo hàm:

+) \(\displaystyle \left( {{u^n}} \right)' = n.{u^{n - 1}}.u'\)

+) \(\displaystyle \left( {{a^u}} \right)' = u'\ln a\)

+) \(\displaystyle \left( {{{\log }_a}u} \right)' = \frac{{u'}}{{u\ln a}}\)

+) \(\displaystyle \left( {uv} \right)' = u'v + uv'\)

+) \(\displaystyle \left( {\frac{u}{v}} \right)' = \frac{{u'v - uv'}}{{{v^2}}}\)

Lời giải chi tiết:

\(\displaystyle y = \frac{{{e^x} - {e^{ - x}}}}{x}\)

\( \Rightarrow y'  = \frac{{\left( {{e^x} - {e^{ - x}}} \right)'.x - \left( {{e^x} - {e^{ - x}}} \right).\left( x \right)'}}{{{x^2}}}\) \(\displaystyle  = \frac{{\left( {{e^x} + {e^{ - x}}} \right)x - \left( {{e^x} - {e^{ - x}}} \right)}}{{{x^2}}}\) \(\displaystyle  = \frac{{x({e^x} + {e^{ - x}}) - {e^x} + {e^{ - x}}}}{{{x^2}}}\)

Xemloigiai.com

Xem thêm lời giải SBT Toán lớp 12

Giải sách bài tập toán hình học và giải tích lớp 12. Giải chi tiết tất cả câu hỏi trong các chương và bài chi tiết trong SBT hình học và giải tích toán 12 cơ bản với cách giải nhanh và ngắn gọn nhất

Lớp 12 | Các môn học Lớp 12 | Giải bài tập, đề kiểm tra, đề thi Lớp 12 chọn lọc

Danh sách các môn học Lớp 12 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.