Bài 2.68 trang 133 SBT giải tích 12

Giải bài 2.68 trang 133 sách bài tập giải tích 12. Giải các phương trình sau:...

Bài làm:

Giải các phương trình sau:

LG a

\(\displaystyle \ln (4x + 2) - \ln (x - 1) = \ln x\)

Phương pháp giải:

Biến đổi phương trình về \(\displaystyle {\log _a}f\left( x \right) = {\log _a}m \Leftrightarrow f\left( x \right) = m\).

Lời giải chi tiết:

Điều kiện: \(\displaystyle \left\{ \begin{array}{l}4x + 2 > 0\\x - 1 > 0\\x > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x >  - \frac{1}{2}\\x > 1\\x > 0\end{array} \right. \Leftrightarrow x > 1\).

Khi đó \(\displaystyle \ln (4x + 2) - \ln (x - 1) = \ln x\)

\( \Leftrightarrow \ln \left( {4x + 2} \right) = \ln x + \ln \left( {x - 1} \right)\)

\(\displaystyle  \Leftrightarrow \ln (4x + 2) = \ln [x(x - 1){\rm{]}}\)

\(\displaystyle  \Leftrightarrow 4x + 2 = {x^2} - x\) \(\displaystyle  \Leftrightarrow {x^2} - 5x - 2 = 0\)

\(\displaystyle  \Leftrightarrow \left[ \begin{array}{l}x = \frac{{5 + \sqrt {33} }}{2}(TM)\\x = \frac{{5 - \sqrt {33} }}{2}(l)\end{array} \right.\)

\(\displaystyle  \Leftrightarrow x = \frac{{5 + \sqrt {33} }}{2}\)

Vậy phương trình có nghiệm \(\displaystyle x = \frac{{5 + \sqrt {33} }}{2}\).


LG b

\(\displaystyle {\log _2}(3x + 1){\log _3}x = 2{\log _2}(3x + 1)\)

Phương pháp giải:

Biến đổi phương trình về dạng tích và áp dụng cách giải phương trình logarit cơ bản.

Lời giải chi tiết:

ĐK: \(\displaystyle \left\{ \begin{array}{l}3x + 1 > 0\\x > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x >  - \frac{1}{3}\\x > 0\end{array} \right. \) \(\Leftrightarrow x > 0\).

Khi đó:

\(\displaystyle {\log _2}(3x + 1){\log _3}x = 2{\log _2}(3x + 1)\)

\(\Leftrightarrow {\log _2}\left( {3x + 1} \right).{\log _3}x - 2{\log _2}\left( {3x + 1} \right) = 0\)

\(\displaystyle  \Leftrightarrow {\log _2}(3x + 1){\rm{[}}{\log _3}x - 2] = 0\)

\(\displaystyle  \Leftrightarrow \left[ \begin{array}{l}{\log _2}(3x + 1) = 0\\{\log _3}x - 2 = 0\end{array} \right.\) \(\displaystyle  \Leftrightarrow \left[ \begin{array}{l}3x + 1 = 1\\{\log _3}x = 2\end{array} \right.\) \(\displaystyle  \Leftrightarrow \left[ \begin{array}{l}x = 0(l)\\x = 9\end{array} \right. \Leftrightarrow x = 9\).


LG c

\(\displaystyle {2^{{{\log }_3}{x^2}}}{.5^{{{\log }_3}x}} = 400\)

Phương pháp giải:

Biến đổi phương trình về phương trình mũ và logarit cơ bản đã biết cách giải.

Lời giải chi tiết:

ĐK: \(\displaystyle x > 0\). Khi đó,

\(\displaystyle {2^{{{\log }_3}{x^2}}}{.5^{{{\log }_3}x}} = 400\)

\( \Leftrightarrow {2^{2{{\log }_3}x}}{.5^{{{\log }_3}x}} = 400\)

\(\displaystyle \Leftrightarrow {4^{{{\log }_3}x}}{.5^{{{\log }_3}x}} = 400\)

\(\displaystyle  \Leftrightarrow {20^{{{\log }_3}x}} = {20^2}\) \(\displaystyle  \Leftrightarrow {\log _3}x = 2 \Leftrightarrow x = 9\) (TM)


LG d

\(\displaystyle {\ln ^3}x - 3{\ln ^2}x - 4\ln x + 12 = 0\)

Phương pháp giải:

Đặt ẩn phụ \(\displaystyle t = \ln x\), giải phương trình ẩn \(\displaystyle t\) và suy ra nghiệm của phương trình ẩn \(\displaystyle x\).

Lời giải chi tiết:

ĐK: \(\displaystyle x > 0\).

Đặt \(\displaystyle t = \ln x\), ta có phương trình:

\(\displaystyle {t^3} - 3{t^2} - 4t + 12 = 0\)\(\displaystyle  \Leftrightarrow \left( {t - 2} \right)\left( {t + 2} \right)\left( {t - 3} \right) = 0\)\(\displaystyle  \Leftrightarrow \left[ \begin{array}{l}t = 2\\t =  - 2\\t = 3\end{array} \right.\)

\(\displaystyle  \Rightarrow \left[ \begin{array}{l}\ln x = 2\\\ln x =  - 2\\\ln x = 3\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = {e^2}\\x = {e^{ - 2}}\\x = {e^3}\end{array} \right.\)

Xemloigiai.com

Xem thêm lời giải SBT Toán lớp 12

Giải sách bài tập toán hình học và giải tích lớp 12. Giải chi tiết tất cả câu hỏi trong các chương và bài chi tiết trong SBT hình học và giải tích toán 12 cơ bản với cách giải nhanh và ngắn gọn nhất

Lớp 12 | Các môn học Lớp 12 | Giải bài tập, đề kiểm tra, đề thi Lớp 12 chọn lọc

Danh sách các môn học Lớp 12 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.