Bài 3.31 trang 178 SBT giải tích 12
Bài làm:
Tính diện tích hình phẳng giới hạn bởi các đường sau:
LG câu a
\(\displaystyle y = 2x - {x^2},x + y = 2\)
Phương pháp giải:
- Giải phương trình hoành độ giao điểm của hai đồ thị hàm số.
- Sử dụng công thức tính diện tích \(\displaystyle S = \int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \)
Giải chi tiết:
Ta có: \(\displaystyle y = 2x - {x^2},y = 2 - x\)
Phương trình hoành độ giao điểm: \(\displaystyle 2x - {x^2} = 2 - x\) \(\displaystyle \Leftrightarrow {x^2} - 3x + 2 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 2\end{array} \right.\)
Khi đó diện tích \(\displaystyle S = \int\limits_1^2 {\left| {2x - {x^2} - 2 + x} \right|dx} \) \(\displaystyle = \int\limits_1^2 {\left| { - {x^2} + 3x - 2} \right|dx} \) \(\displaystyle = \int\limits_1^2 {\left( { - {x^2} + 3x - 2} \right)dx} \)
\(\displaystyle = \left. {\left( { - \dfrac{{{x^3}}}{3} + \dfrac{3}{2}{x^2} - 2x} \right)} \right|_1^2\) \(\displaystyle = - \dfrac{8}{3} + 6 - 4 + \dfrac{1}{3} - \dfrac{3}{2} + 2 = \dfrac{1}{6}\)
Vậy \(\displaystyle S = \dfrac{1}{6}\).
LG câu b
\(\displaystyle y = {x^3} - 12x,y = {x^2}\)
Phương pháp giải:
- Giải phương trình hoành độ giao điểm tìm nghiệm \(\displaystyle {x_1} < {x_2} < ... < {x_n}\).
- Tính diện tích theo công thức:
\(\displaystyle S = \int\limits_{{x_1}}^{{x_n}} {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \) \(\displaystyle = \int\limits_{{x_1}}^{{x_2}} {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \) \(\displaystyle + \int\limits_{{x_2}}^{{x_3}} {\left| {f\left( x \right) - g\left( x \right)} \right|dx} + ...\) \(\displaystyle + \int\limits_{{x_{n - 1}}}^{{x_n}} {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \)
\(\displaystyle = \left| {\int\limits_{{x_1}}^{{x_2}} {\left[ {f\left( x \right) - g\left( x \right)} \right]dx} } \right|\) \(\displaystyle + \left| {\int\limits_{{x_2}}^{{x_3}} {\left[ {f\left( x \right) - g\left( x \right)} \right]dx} } \right|\) \(\displaystyle ... + \left| {\int\limits_{{x_{n - 1}}}^{{x_n}} {\left[ {f\left( x \right) - g\left( x \right)} \right]dx} } \right|\).
Giải chi tiết:
Phương trình hoành độ giao điểm:
\(\displaystyle {x^3} - 12x = {x^2}\)\(\displaystyle \Leftrightarrow {x^3} - {x^2} - 12x = 0\) \(\displaystyle \Leftrightarrow x\left( {{x^2} - x - 12} \right) = 0\) \(\displaystyle \Leftrightarrow \left[ \begin{array}{l}x = 0\\{x^2} - x - 12 = 0\end{array} \right.\) \(\displaystyle \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = - 3\\x = 4\end{array} \right.\)
Diện tích là:
\(\displaystyle S = \int\limits_{ - 3}^4 {\left| {{x^3} - 12x - {x^2}} \right|dx} \) \(\displaystyle = \int\limits_{ - 3}^0 {\left| {{x^3} - 12x - {x^2}} \right|dx} \) \(\displaystyle + \int\limits_0^4 {\left| {{x^3} - 12x - {x^2}} \right|dx} \)
\(\displaystyle = \left| {\int\limits_{ - 3}^0 {\left( {{x^3} - {x^2} - 12x} \right)dx} } \right|\) \(\displaystyle + \left| {\int\limits_0^4 {\left( {{x^3} - {x^2} - 12x} \right)dx} } \right|\) \(\displaystyle = \frac{{99}}{4} + \frac{{160}}{3} = \frac{{937}}{{12}}\).
Vậy \(\displaystyle S = \frac{{937}}{{12}}\).
LG câu c
\(\displaystyle x + y = 1;x + y = - 1;\) \(\displaystyle x - y = 1;x - y = - 1\)
Phương pháp giải:
Dựng hình và suy ra diện tích.
Giải chi tiết:
Vẽ các đường thẳng \(\displaystyle x + y = 1;x + y = - 1;\) \(\displaystyle x - y = 1;x - y = - 1\) trên hệ tục tọa độ ta được phần cần tính diện tích là hình vuông có các đỉnh \(\displaystyle \left( { - 1;0} \right),\left( {0; - 1} \right),\left( {1;0} \right),\left( {0;1} \right)\).
Diện tích hình vuông là: \(\displaystyle S = 4.\frac{1}{2}.1.1 = 2\).
Chú ý:
Sử dụng công thức tích phân ta được \(\displaystyle S = 4\int\limits_0^1 {\left( {1 - x} \right)dx} \)\(\displaystyle = 4\left. {\left( {x - \frac{{{x^2}}}{2}} \right)} \right|_0^1 = 4\left( {1 - \frac{1}{2}} \right) = 2\).
LG câu d
\(\displaystyle y = \frac{1}{{1 + {x^2}}},y = \frac{1}{2}\)
Phương pháp giải:
- Giải phương trình hoành độ giao điểm tìm nghiệm \(\displaystyle {x_1} < {x_2} < ... < {x_n}\).
- Tính diện tích hình phẳng theo công thức \(\displaystyle S = \int\limits_{{x_1}}^{{x_n}} {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \)
Giải chi tiết:
Ta có: \(\displaystyle \frac{1}{{1 + {x^2}}} = \frac{1}{2}\)\(\displaystyle \Leftrightarrow 1 + {x^2} = 2\) \(\displaystyle \Leftrightarrow {x^2} = 1 \Leftrightarrow x = \pm 1\).
Diện tích: \(\displaystyle S = \int\limits_{ - 1}^1 {\left| {\frac{1}{{1 + {x^2}}} - \frac{1}{2}} \right|dx} \)\(\displaystyle = \int\limits_{ - 1}^1 {\left( {\frac{1}{{1 + {x^2}}} - \frac{1}{2}} \right)dx} \)
Dễ thấy hàm số \(\displaystyle y = \frac{1}{{{x^2} + 1}} - \frac{1}{2}\) là hàm số chẵn nên \(\displaystyle S = \int\limits_{ - 1}^1 {\left( {\frac{1}{{1 + {x^2}}} - \frac{1}{2}} \right)dx} \) \(\displaystyle = 2\int\limits_0^1 {\left( {\frac{1}{{1 + {x^2}}} - \frac{1}{2}} \right)dx} \)
Xét \(\displaystyle I = \int\limits_0^1 {\left( {\frac{1}{{1 + {x^2}}} - \frac{1}{2}} \right)dx} \)\(\displaystyle = \int\limits_0^1 {\frac{{dx}}{{1 + {x^2}}}} - \frac{1}{2}\int\limits_0^1 {dx} \) \(\displaystyle = J - \frac{1}{2}\) với \(\displaystyle J = \int\limits_0^1 {\frac{1}{{1 + {x^2}}}dx} \)
Đặt \(\displaystyle x = \tan t \Rightarrow dx = \left( {1 + {{\tan }^2}t} \right)dt\) \(\displaystyle \Rightarrow J = \int\limits_0^{\frac{\pi }{4}} {\frac{{1 + {{\tan }^2}t}}{{1 + {{\tan }^2}t}}dt} = \frac{\pi }{4}\)\(\displaystyle \Rightarrow I = \frac{\pi }{4} - \frac{1}{2}\)
Vậy \(\displaystyle S = 2I = 2.\left( {\frac{\pi }{4} - \frac{1}{2}} \right) = \frac{\pi }{2} - 1\).
LG câu e
\(\displaystyle y = {x^3} - 1\) và tiếp tuyến với \(\displaystyle y = {x^3} - 1\) tại điểm \(\displaystyle \left( { - 1; - 2} \right)\).
Phương pháp giải:
- Viết phương trình tiếp tuyến của đồ thị hàm số tại điểm \(\displaystyle \left( { - 1; - 2} \right)\).
- Tìm nghiệm của phương trình hoành độ giao điểm giữa tiếp tuyến với đồ thị hàm số.
- Tính diện tích theo công thức \(\displaystyle S = \int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \)
Giải chi tiết:
Xét \(\displaystyle y = g\left( x \right) = {x^3} - 1\) có \(\displaystyle g'\left( x \right) = 3{x^2}\)\(\displaystyle \Rightarrow g'\left( { - 1} \right) = 3\).
Phương trình tiếp tuyến của đồ thị hàm số \(\displaystyle y = g\left( x \right)\) tại điểm \(\displaystyle \left( { - 1; - 2} \right)\) là:
\(\displaystyle y = 3\left( {x + 1} \right) - 2\) hay \(\displaystyle y = 3x + 1\).
Xét phương trình \(\displaystyle {x^3} - 1 = 3x + 1 \Leftrightarrow {x^3} - 3x - 2 = 0\) \(\displaystyle \Leftrightarrow \left( {x - 2} \right){\left( {x + 1} \right)^2} = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = 2\end{array} \right.\)
Diện tích: \(\displaystyle S = \int\limits_{ - 1}^2 {\left| {{x^3} - 3x - 2} \right|dx} \) \(\displaystyle = \int\limits_{ - 1}^2 {\left( { - {x^3} + 3x + 2} \right)dx} \) \(\displaystyle = \left. {\left( { - \dfrac{{{x^4}}}{4} + \dfrac{3}{2}{x^2} + 2x} \right)} \right|_{ - 1}^2\) \(\displaystyle = - 4 + 6 + 4 + \dfrac{1}{4} - \dfrac{3}{2} + 2 = \dfrac{{27}}{4}\).
Vậy \(\displaystyle S = \dfrac{{27}}{4}\).
Xemloigiai.com
Xem thêm Bài tập & Lời giải
Trong bài: Bài 3: Ứng dụng hình học của tích phân
Bài tập & Lời giải:
- 👉 Bài 3.32 trang 178 SBT giải tích 12
- 👉 Bài 3.33 trang 178 SBT giải tích 12
- 👉 Bài 3.34 trang 178 SBT giải tích 12
- 👉 Bài 3.35 trang 178 SBT giải tích 12
- 👉 Bài 3.36 trang 179 SBT giải tích 12
- 👉 Bài 3.37 trang 179 SBT giải tích 12
- 👉 Bài 3.38 trang 179 SBT giải tích 12
- 👉 Bài 3.39 trang 180 SBT giải tích 12
- 👉 Bài 3.40 trang 180 SBT giải tích 12
- 👉 Bài 3.41 trang 180 SBT giải tích 12
- 👉 Bài 3.42 trang 180 SBT giải tích 12
Xem thêm lời giải SBT Toán lớp 12
Lớp 12 | Các môn học Lớp 12 | Giải bài tập, đề kiểm tra, đề thi Lớp 12 chọn lọc
Danh sách các môn học Lớp 12 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.
Toán Học
- Đề thi, đề kiểm tra Toán lớp 12
- SBT Toán lớp 12 Nâng cao
- SBT Toán 12 Nâng cao
- SGK Toán 12 Nâng cao
- SBT Toán lớp 12
- SGK Toán lớp 12
Vật Lý
- SBT Vật lí 12 Nâng cao
- SGK Vật lí lớp 12 Nâng cao
- SBT Vật lí lớp 12
- SGK Vật lí lớp 12
- Giải môn Vật lí lớp 12
Hóa Học
- Đề thi, đề kiểm tra Hóa lớp 12
- SBT Hóa học 12 Nâng cao
- SGK Hóa học lớp 12 Nâng cao
- SBT Hóa lớp 12
- SGK Hóa lớp 12
Ngữ Văn
- Đề thi, đề kiểm tra Ngữ Văn 12 mới
- Soạn văn 12
- SBT Ngữ văn lớp 12
- Luyện dạng đọc hiểu
- Văn mẫu 12
- Soạn văn 12 chi tiết
- Soạn văn ngắn gọn lớp 12
- Soạn văn 12 siêu ngắn
- Bài soạn văn lớp 12 siêu ngắn
- Bài soạn văn 12
Lịch Sử
Địa Lý
Sinh Học
- Đề thi, đề kiểm tra Sinh lớp 12
- SGK Sinh lớp 12 Nâng cao
- SBT Sinh lớp 12
- SGK Sinh lớp 12
- Giải môn Sinh học lớp 12
GDCD
Tin Học
Tiếng Anh
- Đề thi, đề kiểm tra Tiếng Anh 12 mới
- SBT Tiếng Anh lớp 12
- Ngữ pháp Tiếng Anh
- SGK Tiếng Anh 12
- SBT Tiếng Anh lớp 12 mới
- SGK Tiếng Anh 12 Mới