Bài 3.36 trang 179 SBT giải tích 12

Giải bài 3.36 trang 179 sách bài tập giải tích 12. Trong các cặp hình phẳng giới hạn bởi các đường sau, cặp nào có diện tích bằng nhau?...

Bài làm:

Trong các cặp hình phẳng giới hạn bởi các đường sau, cặp nào có diện tích bằng nhau?

LG a

\(\displaystyle  {\rm{\{ }}y = x + \sin x,y = x\)  với \(\displaystyle  0 \le x \le \pi {\rm{\} }}\) và \(\displaystyle  {\rm{\{ }}y = x + \sin x,y = x\)  với \(\displaystyle  \pi  \le x \le 2\pi {\rm{\} }}\)

Phương pháp giải:

Tính diện tích mỗi cặp hình phẳng đã cho và suy ra kết luận.

Giải chi tiết:

Ta có: \(\displaystyle  x + \sin x = x \Leftrightarrow \sin x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \pi \end{array} \right.\)

Khi đó \(\displaystyle  {S_1} = \int\limits_0^\pi  {\left| {x + \sin x - x} \right|dx} \) \(\displaystyle   = \int\limits_0^\pi  {\left| {\sin x} \right|dx} \) \(\displaystyle   = \int\limits_0^\pi  {\sin xdx}  =  - \left. {\cos x} \right|_0^\pi \) \(\displaystyle   =  - \cos \pi  + \cos 0 = 1 + 1 = 2\)

\(\displaystyle  {S_2} = \int\limits_\pi ^{2\pi } {\left| {x + \sin x - x} \right|dx} \) \(\displaystyle   = \int\limits_\pi ^{2\pi } {\left| {\sin x} \right|dx} \) \(\displaystyle   = \int\limits_\pi ^{2\pi } {\left( { - \sin x} \right)dx}  = \left. {\cos x} \right|_\pi ^{2\pi }\) \(\displaystyle   = \cos 2\pi  - \cos \pi  = 1 + 1 = 2\)

Do đó \(\displaystyle  {S_1} = {S_2}\).


LG b

\(\displaystyle  \;{\rm{\{ }}y = \sin x,y = 0\) với \(\displaystyle  0 \le x \le \pi {\rm{\} }}\) và \(\displaystyle  {\rm{\{ }}y = \cos x,y = 0\)  với \(\displaystyle  0 \le x \le \pi {\rm{\} }}\);

Phương pháp giải:

Tính diện tích mỗi cặp hình phẳng đã cho và suy ra kết luận.

Giải chi tiết:

\(\displaystyle  {S_1} = \int\limits_0^\pi  {\left| {\sin x} \right|dx}  = \int\limits_0^\pi  {\sin xdx} \) \(\displaystyle   =  - \left. {\cos x} \right|_0^\pi \)\(\displaystyle   =  - \cos \pi  + \cos 0 = 1 + 1 = 2\)

\(\displaystyle  {S_2} = \int\limits_0^\pi  {\left| {\cos x} \right|dx} \) \(\displaystyle   = \int\limits_0^{\frac{\pi }{2}} {\left| {\cos x} \right|dx}  + \int\limits_{\frac{\pi }{2}}^\pi  {\left| {\cos x} \right|dx} \) \(\displaystyle   = \int\limits_0^{\frac{\pi }{2}} {\cos xdx}  - \int\limits_{\frac{\pi }{2}}^\pi  {\cos xdx} \) \(\displaystyle   = \left. {\sin x} \right|_0^{\frac{\pi }{2}} - \left. {\sin x} \right|_{\frac{\pi }{2}}^\pi \)

\(\displaystyle   = \sin \frac{\pi }{2} - \sin 0 - \sin \pi  + \sin \frac{\pi }{2}\) \(\displaystyle   = 1 - 0 - 0 + 1 = 2\)

Do đó \(\displaystyle  {S_1} = {S_2}\).


LG c

\(\displaystyle  {\rm{\{ }}y = \sqrt x ,y = {x^2}{\rm{\} }}\) và \(\displaystyle  {\rm{\{ }}y = \sqrt {1 - {x^2}} ,y = 1 - x{\rm{\} }}\)

Phương pháp giải:

Tính diện tích mỗi cặp hình phẳng đã cho và suy ra kết luận.

Giải chi tiết:

Ta có: \(\displaystyle  \sqrt x  = {x^2} \Leftrightarrow \left\{ \begin{array}{l}x \ge 0\\x = {x^4}\end{array} \right.\) \(\displaystyle   \Leftrightarrow \left\{ \begin{array}{l}x \ge 0\\x\left( {{x^3} - 1} \right) = 0\end{array} \right.\) \(\displaystyle  \left[ \begin{array}{l}x = 0\\x = 1\end{array} \right.\)

Khi đó \(\displaystyle  {S_1} = \int\limits_0^1 {\left| {\sqrt x  - {x^2}} \right|dx} \) \(\displaystyle   = \left| {\int\limits_0^1 {\left( {\sqrt x  - {x^2}} \right)dx} } \right|\) \(\displaystyle   = \left| {\left. {\left( {\frac{2}{3}{x^{\frac{3}{2}}} - \frac{{{x^3}}}{3}} \right)} \right|_0^1} \right| = \left| {\frac{2}{3} - \frac{1}{3}} \right| = \frac{1}{3}\)

\(\displaystyle  \sqrt {1 - {x^2}}  = 1 - x\) \(\displaystyle   \Leftrightarrow \left\{ \begin{array}{l}1 - x \ge 0\\1 - {x^2} = {\left( {1 - x} \right)^2}\end{array} \right.\) \(\displaystyle   \Leftrightarrow \left\{ \begin{array}{l}x \le 1\\1 - {x^2} = 1 - 2x + {x^2}\end{array} \right.\)

\(\displaystyle   \Leftrightarrow \left\{ \begin{array}{l}x \le 1\\2{x^2} - 2x = 0\end{array} \right.\) \(\displaystyle   \Leftrightarrow \left\{ \begin{array}{l}x \le 1\\\left[ \begin{array}{l}x = 0\\x = 1\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 1\end{array} \right.\)

Khi đó \(\displaystyle  {S_2} = \int\limits_0^1 {\left| {\sqrt {1 - {x^2}}  - \left( {1 - x} \right)} \right|dx} \) \(\displaystyle   = \int\limits_0^1 {\left| {\sqrt {1 - {x^2}}  - 1 + x} \right|dx} \) \(\displaystyle   = \left| {\int\limits_0^1 {\left( {\sqrt {1 - {x^2}}  - 1 + x} \right)dx} } \right|\)

\(\displaystyle   = \left| {\int\limits_0^1 {\sqrt {1 - {x^2}} dx}  - \int\limits_0^1 {dx}  + \int\limits_0^1 {xdx} } \right|\) \(\displaystyle   = \left| {\int\limits_0^1 {\sqrt {1 - {x^2}} dx}  - 1 + \frac{1}{2}} \right|\) \(\displaystyle   = \left| {I - \frac{1}{2}} \right|\)

Tính \(\displaystyle  I = \int\limits_0^1 {\sqrt {1 - {x^2}} dx} \).

Đặt \(\displaystyle  x = \sin t \Rightarrow dx = \cos tdt\) \(\displaystyle   \Rightarrow I = \int\limits_0^{\frac{\pi }{2}} {\sqrt {1 - {{\sin }^2}t} .\cos tdt} \) \(\displaystyle   = \int\limits_0^{\frac{\pi }{2}} {{{\cos }^2}tdt} \)

\(\displaystyle   = \frac{1}{2}\int\limits_0^{\frac{\pi }{2}} {\left( {1 + \cos 2t} \right)dt} \) \(\displaystyle   = \frac{1}{2}\left. {\left( {t + \frac{{\sin 2t}}{2}} \right)} \right|_0^{\frac{\pi }{2}}\) \(\displaystyle   = \frac{1}{2}.\frac{\pi }{2} = \frac{\pi }{4}\)

Do đó \(\displaystyle  {S_1} \ne {S_2}\).

Xemloigiai.com

Xem thêm lời giải SBT Toán lớp 12

Giải sách bài tập toán hình học và giải tích lớp 12. Giải chi tiết tất cả câu hỏi trong các chương và bài chi tiết trong SBT hình học và giải tích toán 12 cơ bản với cách giải nhanh và ngắn gọn nhất

Lớp 12 | Các môn học Lớp 12 | Giải bài tập, đề kiểm tra, đề thi Lớp 12 chọn lọc

Danh sách các môn học Lớp 12 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.