Bài 36 trang 124 Sách bài tập Hình học lớp 12 Nâng cao
Bài làm:
Trong mỗi trường hợp sau, viết phương trình mặt phẳng :
LG a
Đi qua ba điểm A(-1;2;3),B(2;-4;3), C(4;5;6).
Lời giải chi tiết:
Cách 1: Mặt phẳng cần tìm có vec tơ pháp tuyến là :
\(\eqalign{ & \overrightarrow n = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right]. \cr & \overrightarrow {AB} = (3; - 6;0),\overrightarrow {AC} = (5;3;3) \cr&\Rightarrow \overrightarrow n = \left( {\left| \matrix{ - 6 \hfill \cr 3 \hfill \cr} \right.\left. \matrix{ 0 \hfill \cr 3 \hfill \cr} \right|;\left| \matrix{ 0 \hfill \cr 3 \hfill \cr} \right.\left. \matrix{ 3 \hfill \cr 5 \hfill \cr} \right|;\left| \matrix{ 3 \hfill \cr 5 \hfill \cr} \right.\left. \matrix{ - 6 \hfill \cr 3 \hfill \cr} \right|} \right) \cr & = ( - 18; - 9;39). \cr} \)
Hiển nhiên \({1 \over 3}\overrightarrow n = ( - 6; - 3;13)\) cũng là vec tơ pháp tuyến của mặt phẳng cần tìm . Vậy mặt phẳng cần tìm đi qua điểm A(-1;2;3) với vec tơ pháp tuyến (-6;-3;13) nên có phương trình :
\(-6(x+1)-3(y-2)+13(z-3)=0\)
hay \(-6x-3y+13z-39=0.\)
Cách 2: Mặt phẳng cần tìm có phương trình dạng :
Ax+By+Cz+D=0.
Vì ba điểm A, B, C nằm trên mặt phẳng đó nên tọa độ của chúng phải thỏa mãn phương trình mặt phẳng và ta có hệ :
\(\left\{ \matrix{ - A + 2B + 3C + D = 0 \hfill \cr 2A - 4B + 3C + D = 0 \hfill \cr 4A + 5B + 6C + D = 0. \hfill \cr} \right.\)
\( \Rightarrow \left\{ \matrix{ - 3A + 6B = 0 \hfill \cr 2A + 9B + 3C = 0 \hfill \cr} \right. \Rightarrow \left\{ \matrix{ A = 2B \hfill \cr B = - {3 \over {13}}C. \hfill \cr} \right.\)
Suy ra :\(A = 2B = - {6 \over {13}}C,D = A - 2B - 3C = - 3C.\)
Ta có thể chọn \(C=13\), khi đó \(A=-6, B=-3, D=-39\) và phương trình mặt phẳng cần tìm là
\(-6x-3y+13z-39=0.\)
LG b
Đi qua điểm M0(1;3;-2) và vuông góc với trục Oy.
Lời giải chi tiết:
Mặt phẳng qua M0(1;3;-2), vuông góc với trục Oy nên nó song song với mp(Oxz).
Vậy phương trình mặt phẳng cần tìm là \(y=3\) (xem bài 35a).
Ta có thể giải cách khác như sau:
Mặt phẳng cần tìm là vec tơ pháp tuyến \(\overrightarrow n = \overrightarrow j = (0;1;0)\) nên có phương trình :
\(0(x - 1) + 1.(y - 3) + 0(z + 2) = 0 \Leftrightarrow y - 3 = 0.\)
LG c
Đi qua điểm M0(1;3;-2) và vuông góc với đường thẳng BC với B=(0;2;-3), C=(1;-4;1).
Lời giải chi tiết:
Vec tơ pháp tuyến của mặt phẳng cần tìm là \(\overrightarrow n = \overrightarrow {BC} = (1; - 6;4)\),
Vậy phương trình mặt phẳng cần tìm là:
\(1(x-1)-6(y-3)+4(z+2)=0\)
hay \(x-6y+4z+25=0.\)
LG d
Đi qua điểm M0(1;3;-2) và song song với mặt phẳng
2x-y+3z+4=0.
Lời giải chi tiết:
Mặt phẳng cần tìm song song với mặt phẳng : 2x-y+3z+4=0 nên phương trình có dạng
2x-y+3z+D=0 với \(D \ne 4\). Vì M0(1;3;-2) thuộc mặt phẳng đó nên \(2.1-3+3.(-2)+D=0 \Rightarrow D = 7.\)
Phương trình mặt phẳng cần tìm là: \(2x-y+3z+7=0.\)
Ta cũng có thể giải bằng cách khác như sau: Vì mặt phẳng cần tìm song song với mặt phẳng 2x-y+3z+4=0 nên nó có một vect ơ pháp tuyến là \(\overrightarrow n = (2; - 1;3)\).
Vậy phương trình mặt phẳng cần tìm là
\(2(x - 1) - 1(y - 3) + 3(z + 2) = 0 \)
\(\Leftrightarrow 2x - y + 3z + 7 = 0.\)
LG e
Đi qua hai điểm A(3;1;-1), B(2;-1;4) và vuông góc với mặt phẳng 2x-y+3z+4=0.
Lời giải chi tiết:
Véc tơ pháp tuyến \(\overrightarrow n \) của mặt phẳng cần tìm vuông góc với hai vec tơ \(\overrightarrow {AB} = ( - 1; - 2;5)\) và \(\overrightarrow {n'} = (2; - 1;3)\) (\(\overrightarrow {n'} \) là vec tơ pháp tuyến của mặt phẳng \(2x-y+3z+4=0\)).
Vậy ta lấy \(\overrightarrow n = \left[ {\overrightarrow {AB} ,\overrightarrow {n'} } \right] = \left( {\left| \matrix{ - 2 \hfill \cr - 1 \hfill \cr} \right.\left. \matrix{ 5 \hfill \cr 3 \hfill \cr} \right|;\left| \matrix{ 5 \hfill \cr 3 \hfill \cr} \right.\left. \matrix{ - 1 \hfill \cr 2 \hfill \cr} \right|;\left| \matrix{ - 1 \hfill \cr 2 \hfill \cr} \right.\left. \matrix{ - 2 \hfill \cr - 1 \hfill \cr} \right|} \right) \)
\(= ( - 1;13;5).\)
Do đó phương trình mặt phẳng cần tìm là:
\(-1(x-3)+13(y-1)+5(z+1)=0\)
hay \(x-13y-5z+5=0.\)
LG g
Đi qua điểm M0(2;-1;2),song song với trục Oy và vuông góc với mặt phẳng 2x-y+3z+4=0.
Lời giải chi tiết:
Vec tơ pháp tuyến của mặt phẳng 2x-y+3z+4=0 là \(\overrightarrow {n'} = (2; - 1;3).\)
Vec tơ pháp tuyến \(\overrightarrow n \) của mặt phẳng cần tìm là :
\(\overrightarrow n = \left[ {\overrightarrow j ,\overrightarrow {n'} } \right] = \left( {\left| \matrix{ 1 \hfill \cr - 1 \hfill \cr} \right.\left. \matrix{ 0 \hfill \cr 3 \hfill \cr} \right|;\left| \matrix{ 0 \hfill \cr 3 \hfill \cr} \right.\left. \matrix{ 0 \hfill \cr 2 \hfill \cr} \right|;\left| \matrix{ 0 \hfill \cr 2 \hfill \cr} \right.\left. \matrix{ 1 \hfill \cr - 1 \hfill \cr} \right|} \right) \)
\(= (3;0; - 2).\)
Vậy phương trình của nó là :
\(3x-2z-2=0.\)
LG h
Đi qua điểm M0(-2;3;1) và vuông góc với hai mặt phẳng
\(\eqalign{
& \left( \alpha \right):2x + y + 2z + 5 = 0 \cr
& \left( {\alpha '} \right):3x + 2y + z - 3 = 0 \cr} \)
Lời giải chi tiết:
Mặt phẳng \(\left( \alpha \right)\) và \(\left( {\alpha '} \right)\) có vec tơ pháp tuyến lần lượt là \(\overrightarrow {{n_\alpha }} = (2;1;2),\overrightarrow {n{'_\alpha }} = (3;2;1).\)
Mặt phẳng cần tìm vuông góc với \(\left( \alpha \right)\) và \(\left( {\alpha '} \right)\) nên có vec tơ pháp tuyến là
Vậy phương trình của mặt phẳng cần tìm là:
\(-3(x+2)+4(y-3)+1(z-1)\)
hay \(3x-4y-z+19 = 0.\)
Xemloigiai.com
Xem thêm Bài tập & Lời giải
Trong bài: Bài 2. Phương trình mặt phẳng
Bài tập & Lời giải:
- 👉 Bài 35 trang 123 Sách bài tập hình học lớp 12 nâng cao
- 👉 Bài 37 trang 124 Sách bài tập Hình học lớp 12 Nâng cao
- 👉 Bài 38 trang 124 Sách bài tập Hình học lớp 12 Nâng cao
- 👉 Bài 39 trang 124 Sách bài tập Hình học lớp 12 Nâng cao
- 👉 Bài 40 trang 125 Sách bài tập Hình học lớp 12 Nâng cao
- 👉 Bài 41 trang 125 Sách bài tập Hình học lớp 12 Nâng cao
- 👉 Bài 42 trang 125 Sách bài tập Hình học lớp 12 Nâng cao
- 👉 Bài 43 trang 125 Sách bài tập Hình học lớp 12 Nâng cao
- 👉 Bài 44 trang 125 Sách bài tập Hình học lớp 12 Nâng cao
- 👉 Bài 45 trang 126 Sách bài tập Hình học lớp 12 Nâng cao
- 👉 Bài 46 trang 126 Sách bài tập Hình học lớp 12 Nâng cao
- 👉 Bài 47 trang 126 Sách bài tập Hình học lớp 12 Nâng cao
- 👉 Bài 48 trang 126 Sách bài tập Hình học lớp 12 Nâng cao
- 👉 Bài 49 trang 126 Sách bài tập Hình học lớp 12 Nâng cao
- 👉 Bài 50 trang 127 Sách bài tập Hình học lớp 12 Nâng cao
- 👉 Bài 51 trang 127 Sách bài tập Hình học lớp 12 Nâng cao
- 👉 Bài 52 trang 127 Sách bài tập Hình học lớp 12 Nâng cao
- 👉 Bài 53 trang 127 Sách bài tập Hình học lớp 12 Nâng cao
- 👉 Bài 54 trang 127 Sách bài tập Hình học lớp 12 Nâng cao
Xem thêm lời giải SBT Toán lớp 12 Nâng cao
GIẢI TÍCH SBT 12 NÂNG CAO
- 👉 CHƯƠNG 1: ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ HÀM SỐ
- 👉 CHƯƠNG II: HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT
- 👉 CHƯƠNG III: NGUYÊN HÀM, PHÂN TÍCH VÀ ỨNG DỤNG
- 👉 CHƯƠNG IV: SỐ PHỨC
- 👉 Ôn tập cuối năm Giải tích
HÌNH HỌC SBT 12 NÂNG CAO
- 👉 CHƯƠNG 1: KHỐI ĐA DIỆN VÀ THỂ TÍCH CỦA CHÚNG
- 👉 CHƯƠNG 2: MẶT CẦU, MẶT TRỤ, MẶT NÓN
- 👉 CHƯƠNG III: PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN
- 👉 Ôn tập cuối năm Hình học
CHƯƠNG 1: ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ HÀM SỐ
- 👉 Bài 1: Tính đơn điệu của hàm số
- 👉 Bài 2: Cực trị của hàm số
- 👉 Bài 3: Giá trị lớn nhất và nhỏ nhất của hàm số
- 👉 Bài 4: Đồ thị của hàm số và phép tịnh tiến hệ tọa độ
- 👉 Bài 5: Đường tiệm cận của đồ thị hàm số
- 👉 Bài 6: Khảo sát sự biến thiên và vẽ đồ thị của một số hàm đa thức
- 👉 Bài 7: Khảo sát sự biến thiên và vẽ đồ thị của một số hàm phân thức hữu tỉ
- 👉 Bài 8: Một số bài toán thường gặp về đồ thị
- 👉 Ôn tập chương 1: Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
CHƯƠNG II: HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT
- 👉 Bài 1. Lũy thừa với số mũ hữu tỉ
- 👉 Bài 2. Lũy thừa với số mũ thực
- 👉 Bài 3, 4. Lôgarit, lôgarit thập phân và lôgarit tự nhiên
- 👉 Bài 5, 6. Hàm số mũ , hàm số lôgarit và hàm số lũy thừa
- 👉 Bài 7. Phương trình mũ và lôgarit
- 👉 Bài 8. Phương trình mũ và lôgarit
- 👉 Bài 9. Bất phương trình mũ và lôgarit
- 👉 Ôn tập chương II - Hàm số lũy thừa, hàm số mũ và hàm số lôgarit
CHƯƠNG III: NGUYÊN HÀM, PHÂN TÍCH VÀ ỨNG DỤNG
- 👉 Bài 1. Nguyên hàm
- 👉 Bài 2. Một số phương pháp tìm nguyên hàm
- 👉 Bài 3. Tích phân
- 👉 Bài 4. Một số phương pháp tính tích phân
- 👉 Bài 5, 6. Một số ứng dụng hình học của tích phân
- 👉 Ôn tập chương III - Nguyên hàm, tích phân và ứng dụng
CHƯƠNG IV: SỐ PHỨC
- 👉 Bài 1. Số phức
- 👉 Bài 2. Căn bậc hai của số phức, phương trình bậc hai
- 👉 Bài 3. Dạng lượng giác của số phức. Ứng dụng
- 👉 Ôn tập chương IV - Số phức
CHƯƠNG 1: KHỐI ĐA DIỆN VÀ THỂ TÍCH CỦA CHÚNG
- 👉 Bài 1: Khái niệm về khối đa diện
- 👉 Bài 2: Phép đối xứng qua mặt phẳng và sự bằng nhau của các khối đa diện
- 👉 Bài 3: Phép vị tự và sự đồng dạng của các khối đa diện
- 👉 Bài 4: Thể tích của khối đa diện
- 👉 Ôn tập chương 1: Khối đa diện và thể tích của chúng
CHƯƠNG 2: MẶT CẦU, MẶT TRỤ, MẶT NÓN
- 👉 Bài 1: Mặt cầu, khối cầu
- 👉 Bài 2, 3 : Khái niệm về mặt tròn xoay. Mặt trụ, hình trụ và khối trụ
- 👉 Bài 4: Mặt nón, hình nón và khối nón
- 👉 Ôn tập chương 2: Mặt cầu, mặt trụ, mặt nón
CHƯƠNG III: PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN
Lớp 12 | Các môn học Lớp 12 | Giải bài tập, đề kiểm tra, đề thi Lớp 12 chọn lọc
Danh sách các môn học Lớp 12 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.
Toán Học
- Đề thi, đề kiểm tra Toán lớp 12
- SBT Toán lớp 12 Nâng cao
- SBT Toán 12 Nâng cao
- SGK Toán 12 Nâng cao
- SBT Toán lớp 12
- SGK Toán lớp 12
Vật Lý
- SBT Vật lí 12 Nâng cao
- SGK Vật lí lớp 12 Nâng cao
- SBT Vật lí lớp 12
- SGK Vật lí lớp 12
- Giải môn Vật lí lớp 12
Hóa Học
- Đề thi, đề kiểm tra Hóa lớp 12
- SBT Hóa học 12 Nâng cao
- SGK Hóa học lớp 12 Nâng cao
- SBT Hóa lớp 12
- SGK Hóa lớp 12
Ngữ Văn
- Đề thi, đề kiểm tra Ngữ Văn 12 mới
- Soạn văn 12
- SBT Ngữ văn lớp 12
- Luyện dạng đọc hiểu
- Văn mẫu 12
- Soạn văn 12 chi tiết
- Soạn văn ngắn gọn lớp 12
- Soạn văn 12 siêu ngắn
- Bài soạn văn lớp 12 siêu ngắn
- Bài soạn văn 12
Lịch Sử
Địa Lý
Sinh Học
- Đề thi, đề kiểm tra Sinh lớp 12
- SGK Sinh lớp 12 Nâng cao
- SBT Sinh lớp 12
- SGK Sinh lớp 12
- Giải môn Sinh học lớp 12
GDCD
Tin Học
Tiếng Anh
- Đề thi, đề kiểm tra Tiếng Anh 12 mới
- SBT Tiếng Anh lớp 12
- Ngữ pháp Tiếng Anh
- SGK Tiếng Anh 12
- SBT Tiếng Anh lớp 12 mới
- SGK Tiếng Anh 12 Mới