Bài 43 trang 125 Sách bài tập Hình học lớp 12 Nâng cao

Viết phương trình mặt phẳng trong mỗi trường hợp sau:

Bài làm:

Viết phương trình mặt phẳng trong mỗi trường hợp sau:

LG a

Đi qua điểm M0(2;1;-1) và qua giao tuyến của hai mặt phẳng

x-y+z-4=0 và 3x-y+z-1=0.

Lời giải chi tiết:

Gọi M(x;y;z) là điểm thuộc giao tuyến \(\Delta \) của hai mặt phẳng, khi đó tọa độ của điểm M là nghiệm của hệ:

\(\left\{ \matrix{  x - y + z = 4 \hfill \cr  3x - y + z = 1. \hfill \cr}  \right.\)

Đây là hệ ba ẩn có hai phương trình. Ta tìm hai nghiệm nào đó của hệ.

Cho z=0, ta có \(\left\{ \matrix{  x - y = 4 \hfill \cr  3x - y = 1 \hfill \cr}  \right. \Rightarrow \left\{ \matrix{  x =  - {3 \over 2} \hfill \cr  y =  - {{11} \over 2}. \hfill \cr}  \right.\)

Vậy \({M_1}( - {3 \over 2}; - {{11} \over 2};0) \in \Delta .\)

Cho y=0, ta có \(\left\{ \matrix{  x + z = 4 \hfill \cr  3x + z = 1 \hfill \cr}  \right. \Rightarrow \left\{ \matrix{  x =  - {3 \over 2} \hfill \cr  y = {{11} \over 2}. \hfill \cr}  \right.\)

Vậy \({M_2}\left( { - {3 \over 2};0;{{11} \over 2}} \right) \in \Delta .\)

Mặt phẳng phải tìm chính là mặt phẳng đi qua \({M_0},{M_1},{M_2}.\)

Viết phương trình mặt phẳng đi qua ba điểm trên, ta được:

\(15x-7y+7z-16=0.\)


LG b

Qua giao tuyến của hai mặt phẳng y+2z-4=0 và x+y-z+3=0, đồng thời song song với mặt phẳng x+y+z-2=0.

Lời giải chi tiết:

Cách 1 : Ta thấy hệ phương trình

\(\left\{ \matrix{  y + 2z - 4 = 0 \hfill \cr  x + y - z + 3 = 0 \hfill \cr  x + y + z - 2 = 0 \hfill \cr}  \right.\)

Có một nghiệm duy nhất là\(\left( {{1 \over 2}; - 1;{5 \over 2}} \right).\)

Điều này có nghĩa là giao tuyến của hai mặt phẳng

\(y+2z-4=0\) và \(x+y-z+3=0\)

Cắt mặt phẳng \(x+y+z-2=0.\)

Vậy không tồn tại mặt phẳng thỏa mãn yêu cầu bài toán.

Cách 2 : Ta tìm hai điểm thuộc giao tuyến của hai mặt phẳng.

Cho z = 0, ta được \({M_1}( - 7;4;0),\) Cho y = 0, ta được \({M_2}( - 1;0;2).\)

Gọi \(\left( \alpha  \right)\) là mặt phẳng song song với mặt phẳng \(x+y+z-2=0\) thì \(\left( \alpha  \right)\) có dạng :

\(x + y + z + D = 0,D \ne  - 2.\)

Ta xác định D để \({M_1},{M_2} \in \left( \alpha  \right).\) D là nghiệm của hệ :

\(\left\{ \matrix{   - 7 + 4 + D = 0 \hfill \cr   - 1 + 2 + D = 0. \hfill \cr}  \right.\)

Hệ vô nghiệm. Vậy không tồn tại mặt phẳng thỏa mãn yêu cầu bài toán.


LG c

Qua giao tuyến của hai mặt phẳng 3x-y+z-2=0 và x+4y-5=0, đồng thời vuông góc với mặt phẳng 2x-z+7=0.

Lời giải chi tiết:

Ta tìm hai điểm \({M_1},{M_2}\) thuộc giao tuyến của hai mặt phẳng.

Gọi \(\overrightarrow {n'}  = (2;0; - 1)\) là vec tơ pháp tuyến của mặt phẳng \(2x-z+7=0\).

Khi đó mặt phẳng cần tìm là mặt phẳng đi qua M1 và có vec tơ pháp tuyến \(\overrightarrow n  = \left[ {\overrightarrow {{M_1}{M_2}} ,\overrightarrow {n'} } \right].\)

Sau các tính toán, ta có kết quả : Mặt phẳng cần tìm có phương trình :

\(x-22y+2z+21=0.\)

Xemloigiai.com

Xem thêm lời giải SBT Toán lớp 12 Nâng cao

Giải sách bài tập toán hình học và giải tích lớp 12. Giải chi tiết tất cả câu hỏi trong các chương và bài chi tiết trong SBT hình học và đại số toán 12 nâng cao với cách giải nhanh và ngắn gọn nhất

GIẢI TÍCH SBT 12 NÂNG CAO

HÌNH HỌC SBT 12 NÂNG CAO

CHƯƠNG 1: ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ HÀM SỐ

CHƯƠNG II: HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT

CHƯƠNG III: NGUYÊN HÀM, PHÂN TÍCH VÀ ỨNG DỤNG

CHƯƠNG IV: SỐ PHỨC

CHƯƠNG 1: KHỐI ĐA DIỆN VÀ THỂ TÍCH CỦA CHÚNG

CHƯƠNG 2: MẶT CẦU, MẶT TRỤ, MẶT NÓN

CHƯƠNG III: PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN

Lớp 12 | Các môn học Lớp 12 | Giải bài tập, đề kiểm tra, đề thi Lớp 12 chọn lọc

Danh sách các môn học Lớp 12 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.