Bài 69 trang 133 Sách bài tập Hình học lớp 12 Nâng cao

Tính khoảng cách giữa các cặp đường thẳng sau :

Bài làm:

Tính khoảng cách giữa các cặp đường thẳng sau :

\(\eqalign{  & a)\;\;{d_1}:\left\{ \matrix{  x = 1 + t \hfill \cr  y =  - 1 - t \hfill \cr  z = 1 \hfill \cr}  \right.,{d_2}:\left\{ \matrix{  x = 2 - 3{t'} \hfill \cr  y =  - 2 + 3{t'} \hfill \cr  z = 3{t'}. \hfill \cr}  \right.  \cr  & b)\;\;{d_1}:{{x - 1} \over 2} = {{y + 3} \over 1} = {{z - 4} \over -2},\cr&\;\;\;\;\;{d_2}:{{x + 2} \over { - 4}} = {{y - 1} \over { - 2}} = {{z + 1} \over 4};  \cr  & c)\;\;{d_1}:{{x - 1} \over 1} = {{y - 2} \over 2} = {{z - 3} \over 3},\cr&\;\;\;\;\;\;{d_2}:\left\{ \matrix{  x = 2 - t \hfill \cr  y =  - 1 + t \hfill \cr  z = t \hfill \cr}  \right.; \cr} \)

d)  \({d_1}\) là giao tuyến của hai mặt phẳng \(\left( \alpha  \right):2x + 3y - 4 = 0\) và \( \left( {\alpha '} \right):y + z - 4 = 0; \)

\( {d_2}:\left\{ \matrix{  x = 1 + 3t \hfill \cr  y = 2 + t \hfill \cr  z =  - 1 + 2t \hfill \cr}  \right. \)

Giải

a) Đường thẳng d1 đi qua điểm Mo( 1 ; -1 ; 1) và có vectơ chỉ phương \(\overrightarrow u \) = (1 ; -1 ; 0). Đường thẳng d2 đi qua điểm M'o (2 ; - 2 ; 0) và có vectơ chỉ phương \(\overrightarrow {u '}\) = (-1 ; 1 ; 1). Vì \(\overrightarrow {{M_0}M{'_0}} \) = (1 ; -1 ; -1) = \( - \overrightarrow {u'} \) nên hai đường thẳng đó cắt nhau, do đó khoảng cách giữa chúng bằng 0.

b) Hai đường thẳng song song.

Khoảng cách giữa chúng bằng khoảng cách từ một điểm thuộc đường thẳng này tới đường thẳng kia.

c) Cách 1. Đường thẳng d1 đi qua Mơ( 1 ; 2 ; 3) và có vectơ chỉ phương \(\overrightarrow {{u_1}} \) (1 ; 2 ; 3).

Đường thẳng d2 đi qua M'0 (2 ; -1 ; 0) và có vectơ chỉ phương \(\overrightarrow {{u_2}} \) (-1 ; 1 ; 1). Khoảng cách giữa d1 và d2

                  \(d({d_1},{d_2}) = {{\left| {\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right].\overrightarrow {{M_0}M{'_0}} } \right|} \over {\left| {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right|}} = {{\sqrt {26} } \over {13}}.\) 

Cách 2. Gọi (\(\alpha \)) là mặt phẳng chứa d2 và song song với d1. Khi đó, (\(\alpha \)) đi qua M'(2 ; - 1 ; 0) và có vectơ pháp tuyến \(\overrightarrow n  = \left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right]\) = (-1 ; -4 ; 3).

Phương trình của mp(\(\alpha \)) là : x + 4y - 3z + 2 = 0

Vậy \(d({d_1},{d_2}) = d({M_0},(\alpha )) = {{\left| {1 + 4.2 - 3.3 + 2} \right|} \over {\sqrt {1 + 16 + 9} }} = {{\sqrt {26} } \over {13}}.\) 

d) \(d({d_1},{d_2}) = \sqrt {13} .\)

Xemloigiai.com

Xem thêm Bài tập & Lời giải

Trong bài: Bài 3. Phương trình đường thẳng - SBT Toán 12 Nâng cao

Bài tập & Lời giải:

Xem thêm lời giải SBT Toán 12 Nâng cao

Lời giải chi tiết, đáp án bài tập SBT Giải tích, Hình học 12 Nâng cao. Tất cả lý thuyết, bài tập vận dụng, thực hành Toán 12 Nâng cao

PHẦN SBT GIẢI TÍCH 12 NÂNG CAO

PHẦN SBT HÌNH HỌC 12 NÂNG CAO

CHƯƠNG I: ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ

CHƯƠNG II: HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT

CHƯƠNG III: NGUYÊN HÀM, PHÂN TÍCH VÀ ỨNG DỤNG

CHƯƠNG IV: SỐ PHỨC

CHƯƠNG I: KHỐI ĐA DIỆN VÀ THỂ TÍCH CỦA CHÚNG

CHƯƠNG II: MẶT CẦU, MẶT TRỤ, MẶT NÓN

CHƯƠNG III: PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN

Lớp 12 | Các môn học Lớp 12 | Giải bài tập, đề kiểm tra, đề thi Lớp 12 chọn lọc

Danh sách các môn học Lớp 12 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.