Bài 80 trang 136 Sách bài tập Hình học lớp 12 Nâng cao

a)Cho đường thẳng d là giao tuyến của hai mặt phẳng

Bài làm:

a) Cho đường thẳng d là giao tuyến của hai mặt phẳng

\(\left( \alpha  \right):x + y + z + 1 = 0\) và \(\left( {\alpha '} \right):x - y + z - 1 = 0;\)

Và cho hai mặt phẳng \(\eqalign{  & \left( {{P_1}} \right):x + 2y + 2z + 3 = 0  \cr  & \left( {{P_2}} \right):x + 2y + 2z + 7 = 0 \cr} \)

Viết phương trình mặt cầu có tâm I thuộc d và tiếp xúc với cả  hai mặt phẳng (P1) và (P2).

b) Cho đường thẳng \(d:{x \over 2} = {{y - 1} \over 1} = {{z + 1} \over 2}\) và hai mặt phẳng 

\(\eqalign{
& \left( {{P_1}} \right):x + y - 2z + 5 = 0 \cr
& \left( {{P_2}} \right):2x - y + z + 2 = 0 \cr} \)

Giải

a) Ta nhận thấy mp(\({P_1}\)) song song với mp(\({P_2}\)).

Gọi A là giao điểm của đường thẳng d với mp(\({P_1}\)). Tọa độ (x; y; z) của A là nghiệm của hệ: \(\left\{ \matrix{  x + y + z + 1 = 0 \hfill \cr  x - y + z - 1 = 0 \hfill \cr  x + 2y + 2z + 3 = 0 \hfill \cr}  \right.\) 

Suy ra \(A = \left( {1; - 1; - 1} \right).\)

Gọi B là giao điểm của đường thẳng d với mp(\({P_2}\)). Toa độ (x; y; z) của B là nghiệm của hệ: \(\left\{ \matrix{  x + y + z + 1 = 0 \hfill \cr  x - y + z - 1 = 0 \hfill \cr  x + 2y + 2z + 7 = 0 \hfill \cr}  \right.\) 

Suy ra \(B = \left( {5; - 1; - 5} \right).\)

Tâm I của mặt cầu phải tìm là trung điểm của đoạn thẳng AB.

Do đó \(I = \left( {3; - 1; - 3} \right)\). Bán kính của mặt cầu phải tìm là

        \(R = d\left( {I,\left( {{P_1}} \right)} \right) = {{\left| {3 - 2 - 6 + 3} \right|} \over {\sqrt 9 }} = {2 \over 3}.\)

Vậy phương trình mặt cầu cần tìm là:

        \({\left( {x - 3} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z + 3} \right)^2} = {4 \over 9}.\)

b) Gọi \(I = \left( {a;b;c} \right)\) là tâm mặt cầu cần tìm, do \(I \in d\) nên

        \({a \over 2} = {{b - 1} \over 1} = {{c + 1} \over 2} \Leftrightarrow \left\{ \matrix{  a - 2b + 2 = 0 \hfill \cr  a - c - 1 = 0. \hfill \cr}  \right.\)

Vì mặt cầu (S) tiếp xúc với cả mp(\({P_1}\)) và mp(\({P_2}\)) nên:

        \(d\left( {I,\left( {{P_1}} \right)} \right) = d\left( {I,\left( {{P_2}} \right)} \right) = R\)

        \( \Leftrightarrow {{\left| {a + b - 2c + 5} \right|} \over {\sqrt 6 }} = {{\left| {2a - b + c + 2} \right|} \over {\sqrt 6 }} \Leftrightarrow \left[ \matrix{  a - 2b + 3c = 3 \hfill \cr  3a - c =  - 7. \hfill \cr}  \right.\)

Kết hợp với điều kiện trên ta có:

Vậy có 2 mặt cầu có tâm nằm trên \(d\) và tiếp xúc với \(\left( {{P_1}} \right),\left( {{P_2}} \right)\) , chúng có phương trình là

                              \(\eqalign{  & {\left( {x - {8 \over 3}} \right)^2} + {\left( {y - {7 \over 3}} \right)^2} + {\left( {z- {5 \over 3}} \right)^2} = {{200} \over {27}};  \cr  & {\left( {x + 4} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z + 5} \right)^2} = {{50} \over 3}. \cr} \)

Xemloigiai.com

Xem thêm Bài tập & Lời giải

Trong bài: Bài 3. Phương trình đường thẳng - SBT Toán 12 Nâng cao

Bài tập & Lời giải:

Xem thêm lời giải SBT Toán 12 Nâng cao

Lời giải chi tiết, đáp án bài tập SBT Giải tích, Hình học 12 Nâng cao. Tất cả lý thuyết, bài tập vận dụng, thực hành Toán 12 Nâng cao

PHẦN SBT GIẢI TÍCH 12 NÂNG CAO

PHẦN SBT HÌNH HỌC 12 NÂNG CAO

CHƯƠNG I: ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ

CHƯƠNG II: HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT

CHƯƠNG III: NGUYÊN HÀM, PHÂN TÍCH VÀ ỨNG DỤNG

CHƯƠNG IV: SỐ PHỨC

CHƯƠNG I: KHỐI ĐA DIỆN VÀ THỂ TÍCH CỦA CHÚNG

CHƯƠNG II: MẶT CẦU, MẶT TRỤ, MẶT NÓN

CHƯƠNG III: PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN

Lớp 12 | Các môn học Lớp 12 | Giải bài tập, đề kiểm tra, đề thi Lớp 12 chọn lọc

Danh sách các môn học Lớp 12 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.