Bài 9 trang 74 Tài liệu dạy – học Toán 9 tập 1

Giải bài tập Cho tứ giác ABCD có AB = AC = AD = 20 cm,

Đề bài

Cho tứ giác ABCD có AB = AC = AD = 20 cm, góc B bằng \({60^o}\) và góc A bằng \({90^o}\).

a) Tính đường chéo BD.

b) Tính khoảng cách BH và DK từ hai điểm B và D đến AC.

c) Vẽ BE vuông góc với DC kéo dài. Tính BE, CE, DC.

Phương pháp giải - Xem chi tiết

a) Áp dụng định lý Pythagore vào tam giác ABD vuông tại A để tính BD

b) Tính góc BAC và CAD từ dữ kiện đề bài từ đó sử dụng các hệ thức lượng giác để tính.

c) Tính góc BCE từ đó sử dụng các hệ thức lượng giác để tính BE, CE. Sử dụng định lý Pythagore tính ED từ đó suy ra CD.

Lời giải chi tiết

a) Tính đường chéo BD.

Áp dụng định lý Pythagore vào tam giác ABD vuông tại A:

\(B{D^2} = A{B^2} + A{D^2}\)\(\, = {20^2} + {20^2} = {2.20^2}\)

\(\Rightarrow BD = 20\sqrt 2 \) (cm)

b) Tính khoảng cách BH và DK từ hai điểm B và D đến AC.

Ta có AC = AB (gt) \( \Rightarrow \)\(\Delta \) ABC cân tại A mà góc B bằng \({60^o}\) \( \Rightarrow \)\(\Delta \) ABC đều

\( \Rightarrow \)\(\widehat {BAC} = {60^o}\)

Xét \(\Delta \)BHA vuông tại H, ta có:

\(\sin \left( {\widehat {BAC}} \right) = \dfrac{{BH}}{{AB}}\)

\(\Rightarrow BH = AB.\sin \left( {\widehat {BAC}} \right) \)\(\,= 20.\sin {60^o} = 10\sqrt 3 \) (cm)

Lại có \(\widehat {BAC} + \widehat {CAD} = \angle BAD\)

\(\Rightarrow \widehat{ CAD }= \widehat {BAD} - \widehat {BAC} \)\(\,= {90^o} - {60^o} = {30^o}\)

Xét \(\Delta \) DKA vuông tại K, ta có:

\(\sin \left( {\widehat {DAK}} \right) = \dfrac{{DK}}{{AD}}\)

\(\Rightarrow DK = AD.\sin \left( {\widehat {DAK}} \right)\)\(\, = 20.\sin {30^o} = 10\) (cm)

c) Vẽ BE vuông góc với DC kéo dài. Tính BE, CE, DC.

Ta có: AC = AD (gt) \( \Rightarrow \)\(\Delta \)ACD cân tại A \( \Rightarrow \)\(\widehat {ACD} = \widehat {ADC}\)

Theo định lý tổng 3 góc trong tam giác ACD có:

\(\widehat {DAC} + \widehat {ACD} + \widehat {ADC} = {180^o}\)hay \({30^o} + \widehat {ACD} + \widehat {ACD} = {180^o}\)

\(\Rightarrow \widehat {ACD} = {75^o}\)

Có \(\Delta \)ABC đều (cmt) \( \Rightarrow \)\(\widehat {ACB} = {60^o}\); BC = AB = AD = 20 cm

Lại có \(\widehat {ACD} + \widehat {ACB} + \widehat {BCE} = {180^o}\)

\(\Rightarrow \widehat {BCE} = {180^o} - \widehat {ACD} - \widehat {ACB}\)\(\, = {180^o} - {75^o} - {60^o} = {45^o}\)

\( \Rightarrow \Delta \)BEC vuông cân tại E.

Xét \(\Delta \)BEC vuông cân tại E, ta có:

\(\sin \left( {\widehat {BCE}} \right) = \dfrac{{BE}}{{BC}}\)

\(\Rightarrow BE = BC.\sin \left( {\widehat {BCE}} \right) \)\(\,= 20.\sin {45^o} = 10\sqrt 2 \) (cm)

CE = BE = \(10\sqrt 2 \) cm

Áp dụng định lý Pythagore vào tam giác BDE vuông tại E:

\(E{D^2} = B{D^2} - B{E^2}\)\(\, = {2.20^2} - {\left( {10\sqrt 2 } \right)^2} = 600 \)

\(\Rightarrow ED = 10\sqrt 6 \) (cm)

\( \Rightarrow CD = ED - EC = 10\sqrt 6  - 10\sqrt 2\)\(\,  = 10\left( {\sqrt 6  - \sqrt 2 } \right)\)  (cm)

Xemloigiai.com

Xem thêm lời giải Tài liệu Dạy - học Toán 9

Giải bài tập Tài liệu Dạy - học Toán lớp 9, đầy đủ công thức, lý thuyết, định lí, chuyên đề toán. Phát triển tư duy đột phá trong dạy học Toán 9, để học tốt dạy học Toán 9

CHƯƠNG I : CĂN BẬC HAI - CĂN BẬC BA

CHƯƠNG II : HÀM SỐ BẬC NHẤT

CHƯƠNG III: HỆ PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN

CHƯƠNG IV: HÀM SỐ BẬC HAI VÀ PHƯƠNG TRÌNH BẬC HAI

CHƯƠNG I: HỆ THỨC LƯỢNG TRONG TAM GIÁC VUÔNG

CHƯƠNG II : ĐƯỜNG TRÒN

CHƯƠNG III: GÓC VỚI ĐƯỜNG TRÒN

Lớp 9 | Các môn học Lớp 9 | Giải bài tập, đề kiểm tra, đề thi Lớp 9 chọn lọc

Danh sách các môn học Lớp 9 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.