Câu 1.64 trang 23 sách bài tập Giải tích 12 Nâng cao

Chứng minh rằng parabol (P) có phương trình

Bài làm:

Chứng minh rằng parabol (P) có phương trình

                \(y = {x^2} - 3x - 1\)

Tiếp xúc với đồ thị (C) của hàm số

                \(y = {{ - {x^2} + 2x - 3} \over {x - 1}}\)

Viết phương trình tiếp tuyến tuyến chung của parabol (P) và đường cong (C) tại tiếp điểm của chúng.

Giải

Ta viết hàm số thứ hai dưới dạng

                        \(y =  - x + 1 - {2 \over {x - 1}}\)

Hoành độ của tiếp điểm (P) và (C) là nghiệm của hệ phương trình

                         \(\left\{ \matrix{- x + 1 - {2 \over {x - 1}} = {x^2} - 3x - 1 \hfill \cr - 1 + {2 \over {{{\left( {x - 1} \right)}^2}}} = 2x - 3 \hfill \cr}  \right.\)

Phương trình thứ hai của hệ tương đương với phương trình

                         \(\eqalign{& {2 \over {{{\left( {x - 1} \right)}^2}}} = 2(x - 1)  \cr &  \Leftrightarrow {\left( {x - 1} \right)^3} = 1 \Leftrightarrow x = 2 \cr} \)

x = 2 cũng là nghiệm của phương trình đầu của hệ.

Hệ có nghiệm duy nhât là x = 2.

Do đó hai đường cong (P) và (C) tiếp xúc với nhau tại điểm A(2;-3)

Phương trình tiếp tuyến chung của (P) và (C) là y = x – 5

Xemloigiai.com

Xem thêm lời giải SBT Toán 12 Nâng cao

Lời giải chi tiết, đáp án bài tập SBT Giải tích, Hình học 12 Nâng cao. Tất cả lý thuyết, bài tập vận dụng, thực hành Toán 12 Nâng cao

PHẦN SBT GIẢI TÍCH 12 NÂNG CAO

PHẦN SBT HÌNH HỌC 12 NÂNG CAO

CHƯƠNG I: ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ

CHƯƠNG II: HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT

CHƯƠNG III: NGUYÊN HÀM, PHÂN TÍCH VÀ ỨNG DỤNG

CHƯƠNG IV: SỐ PHỨC

CHƯƠNG I: KHỐI ĐA DIỆN VÀ THỂ TÍCH CỦA CHÚNG

CHƯƠNG II: MẶT CẦU, MẶT TRỤ, MẶT NÓN

CHƯƠNG III: PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN

Lớp 12 | Các môn học Lớp 12 | Giải bài tập, đề kiểm tra, đề thi Lớp 12 chọn lọc

Danh sách các môn học Lớp 12 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.