Đề kiểm tra giữa học kì 1 Toán 7 - Đề số 2 - Kết nối tri thức
Đề bài
Phần I: Trắc nghiệm (3 điểm). Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm.
Câu 1: Số hữu tỉ là:
A. Phân số khác 0
B. Các số viết được dưới dạng \(\dfrac{a}{b}\left( {a,b \in N,b \ne 0} \right)\)
C. Các số viết được dưới dạng \(\dfrac{a}{b}\left( {a,b \in Z,b \ne 0} \right)\)
D. Các số viết được dưới dạng \(\dfrac{a}{b}\left( {a,b \in Z} \right)\)
Câu 2: Giá trị x thỏa mãn \( - 8{x^2} + 50 = 0\)là:
A. \(x = \dfrac{{25}}{4}\); B. \(x = \dfrac{5}{2}\);
C. \(x = \dfrac{{ - 5}}{2}\) D. \(x = \pm \dfrac{5}{2}\).
Câu 3: Kết quả của phép tính \(\dfrac{{{3^5}{{.4}^3}}}{{{9^2}{{.8}^2}}}\)là
A. \(3\); B.\(1\);
C. \(\dfrac{3}{4}\); D. Một kết quả khác.
Câu 4: Trên hình vẽ, 2 góc A1 và B3 ở vị trí:
A. so le trong; B. so le ngoài; C. đồng vị; D. trong cùng phía.
Câu 5: Cho \(\widehat {xOy} = 70^\circ \). Tia Om là tia phân giác của \(\widehat {xOy}\), tia On là tia đối của tia Om. Tính số đo \(\widehat {xOn}\)
A.\(70^\circ \); B.\(\;35^\circ \); C. \(110^\circ \); D. \(145^\circ \).
Câu 6: Cho điểm A nằm ngoài đường thẳng p. Có bao nhiêu đường thẳng song song với d, đi qua A?
A. \(0\); B. \(2\);
C. \(1\); D. Vô số.
B. PHẦN TỰ LUẬN (7 điểm)
Câu 1: ( 1 điểm)
Tính giá trị của các biểu thức sau:
a) \({\mkern 1mu} {\mkern 1mu} \dfrac{4}{{13}}.15\dfrac{3}{{41}} - \dfrac{4}{{13}}.2\dfrac{3}{{41}}\) b) \({\mkern 1mu} {\mkern 1mu} \sqrt {25} .\left( {0,4 - 1\dfrac{1}{2}} \right):\left[ {{{\left( { - 2} \right)}^3}.\dfrac{{11}}{8}} \right]\)
Câu 2: (1,5 điểm)
Tìm x, biết:
a) \( - 0,12 - 2x = - 1\dfrac{2}{5}\)
b) \(\dfrac{{x + \dfrac{3}{2}}}{6} = \dfrac{{ - 5}}{{12}}\)
c) \(\left( { - 2x + \dfrac{5}{2}} \right).\left( {{x^2} + 4} \right) = 0\)
Câu 3: ( 1,5 điểm)
Cho hình vẽ sau:
Biết \(\widehat {xAC} = {35^0},{\mkern 1mu} \widehat {CBy} = {45^0}\) và \(\widehat {ACB} = {80^0}.\) Chứng minh rằng \(Ax{\mkern 1mu} //{\mkern 1mu} By\).
Câu 4: (1 điểm)
Tính chu vi một sân đấu hình tròn biết diện tích của nó là 200 m2 (làm tròn kết quả với độ chính xác 0,05)
Câu 5: ( 1,5 điểm)
Cho hình vẽ sau:
Biết \(a \bot c,{\mkern 1mu} b \bot c,{\mkern 1mu} 2{\rm{x}} = 3y\). Tính x, y.
Câu 6: (0,5 điểm) Tìm giá trị lớn nhất của biểu thức:
\(M = \dfrac{3}{{{{(2x + 1)}^4} + 2}}\)
Lời giải chi tiết
A. PHẦN TRẮC NGHIỆM
1. C |
2. D |
3. A |
4. A |
5. D |
6. C |
Câu 1
Phương pháp
Định nghĩa số hữu tỉ
Cách giải
Số hữu tỉ là các số viết được dưới dạng \(\dfrac{a}{b}\left( {a,b \in Z,b \ne 0} \right)\)
Chọn C.
Câu 2
Phương pháp
Nếu A = B2 thì A = B hoặc A = -B
Cách giải
Ta có:
\(\begin{array}{l} - 8{x^2} + 50 = 0\\ \Leftrightarrow 8{x^2} = 50\\ \Leftrightarrow {x^2} = \dfrac{{50}}{8} = \dfrac{{25}}{4}\\ \Leftrightarrow {x^2} = {\left( { \pm \dfrac{5}{2}} \right)^2}\\ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \dfrac{5}{2}}\\{x = - \dfrac{5}{2}}\end{array}} \right.\end{array}\)
Vậy \(x = \pm \dfrac{5}{2}\)
Chọn D.
Câu 3
Phương pháp
Đưa các thừa số về dạng lũy thừa có cơ số là số nguyên tố rồi rút gọn
Cách giải
Ta có:
\(\dfrac{{{3^5}{{.4}^3}}}{{{9^2}{{.8}^2}}} = \dfrac{{{3^5}.{{\left( {{2^2}} \right)}^3}}}{{{{\left( {{3^2}} \right)}^2}.{{\left( {{2^3}} \right)}^2}}} = \dfrac{{{3^5}{{.2}^{2.3}}}}{{{3^{2.2}}{{.2}^{3.2}}}} = \dfrac{{{3^5}{{.2}^6}}}{{{3^4}{{.2}^6}}} = 3\)
Chọn A.
Câu 4
Phương pháp
Xác định các góc tạo bởi 1 đường thẳng cắt 2 đường thẳng
Cách giải
2 góc A1 và B3 ở vị trí so le trong
Chọn A.
Câu 5
Phương pháp
Sử dụng tính chất tia phân giác của một góc.
Tổng số đo của 2 góc kề bù là 180 độ
Cách giải
Vì Om là tia phân giác của \(\widehat {xOy}\) nên \(\widehat {xOm} = \widehat {yOm} = \dfrac{1}{2}.\widehat {xOy} = \dfrac{1}{2}.70^\circ = 35^\circ \)
Mà \(\widehat {xOm},\widehat {xOn}\) là 2 góc kề bù nên \(\widehat {xOm} + \widehat {xOn} = 180^\circ \Rightarrow \widehat {xOn} = 180^\circ - \widehat {xOm} = 180^\circ - 35^\circ = 145^\circ \)
Chọn D.
Câu 6
Phương pháp
Tiên đề Euclid về đường thẳng song song
Cách giải
Theo Tiên đề Euclid về đường thẳng song song: Qua 1 điểm nằm ngoài đường thẳng, có 1 và chỉ 1 đường thẳng song song với đường thẳng đó.
Chọn A.
B. PHẦN TỰ LUẬN
Câu 1
Phương pháp:
a) Sử dụng tính chất phân phối của phép nhân và cộng \(ab + ac = a\left( {b + c} \right)\).
b) Đưa về phân số và tính toán.
Cách giải:
a) \(\begin{array}{*{20}{l}}{{\mkern 1mu} {\mkern 1mu} \dfrac{4}{{13}}.15\dfrac{3}{{41}} - \dfrac{4}{{13}}.2\dfrac{3}{{41}}}\\{ = \dfrac{4}{{13}}\left( {15\dfrac{3}{{41}} - 2\dfrac{3}{{41}}} \right)}\\{ = \dfrac{4}{{13}}.13}\\{ = 4}\end{array}\) |
b) \(\begin{array}{*{20}{l}}{{\mkern 1mu} {\mkern 1mu} \sqrt {25} .\left( {0,4 - 1\dfrac{1}{2}} \right):\left[ {{{\left( { - 2} \right)}^3}.\dfrac{{11}}{8}} \right]}\\{ = 5.\left( {\dfrac{2}{5} - \dfrac{3}{2}} \right):\left( { - 8.\dfrac{{11}}{8}} \right)}\\{ = 5.\left( {\dfrac{4}{{10}} - \dfrac{{15}}{{10}}} \right):\left( { - 11} \right)}\\{ = 5.\dfrac{{ - 11}}{{10}}.\dfrac{{ - 1}}{{11}}}\\{ = \dfrac{1}{2}}\end{array}\) |
Câu 2
Phương pháp
a) Đưa các số hữu tỉ về dạng phân số
Số trừ = số bị trừ - hiệu
b) Đưa 2 tỉ số về dạng có cùng mẫu số rồi sử dụng nhận xét: Nếu \(\dfrac{a}{b} = \dfrac{c}{b} \Rightarrow a = c(b \ne 0)\)
c) Nếu A . B = 0 thì A = 0 hoặc B = 0
Lời giải
a)
\(\begin{array}{l} - 0,12 - 2x = - 1\dfrac{2}{5}\\ \Leftrightarrow \dfrac{{ - 12}}{{100}} - 2x = \dfrac{{ - 7}}{5}\\ \Leftrightarrow \dfrac{{ - 3}}{{25}} - 2x = \dfrac{{ - 7}}{5}\\ \Leftrightarrow 2x = \dfrac{{ - 3}}{{25}} - (\dfrac{{ - 7}}{5})\\ \Leftrightarrow 2x = \dfrac{{ - 3}}{{25}} + \dfrac{{35}}{{25}}\\ \Leftrightarrow 2x = \dfrac{{32}}{{25}}\\ \Leftrightarrow x = \dfrac{{32}}{{25}}:2\\ \Leftrightarrow x = \dfrac{{32}}{{25}}.\dfrac{1}{2}\\ \Leftrightarrow x = \dfrac{{16}}{{25}}\end{array}\)
Vậy \(x = \dfrac{{16}}{{25}}\)
b)
\(\begin{array}{l}\dfrac{{x + \dfrac{3}{2}}}{6} = \dfrac{{ - 5}}{{12}}\\ \Leftrightarrow \dfrac{{2.(x + \dfrac{3}{2})}}{{12}} = \dfrac{{ - 5}}{{12}}\\ \Leftrightarrow \dfrac{{2x + 3}}{{12}} = \dfrac{{ - 5}}{{12}}\\ \Leftrightarrow 2x + 3 = - 5\\ \Leftrightarrow 2x = - 5 - 3\\ \Leftrightarrow 2x = - 8\\ \Leftrightarrow x = - 4\end{array}\)
Vậy x = -4
c)
\(\left( { - 2x + \dfrac{5}{2}} \right).\left( {{x^2} + 4} \right) = 0\)
+) Trường hợp 1:
\(\begin{array}{*{20}{l}}{ - 2x + \dfrac{5}{2} = 0}\\{ \Leftrightarrow 2x = \dfrac{5}{2}}\\{ \Leftrightarrow x = \dfrac{5}{2}:2}\\{ \Leftrightarrow x = \dfrac{5}{4}}\end{array}\)
+) Trường hợp 2:
x2 + 4 = 0
\( \Leftrightarrow {x^2} = - 4\) ( Vô lí vì x2 \( \ge \)0 với mọi x)
Vậy x = \(\dfrac{5}{4}\)
Câu 3
Phương pháp:
+ Áp dụng tính chất: Hai đường thẳng phân biệt cùng song song với đường thẳng thứ ba thì chúng song song với nhau.
+ Dấu hiệu nhận biết hai đường thẳng song song.
Cách giải:
Kẻ \(Cz//{\rm{Ax}} \Rightarrow \widehat {xAC} = \widehat {ACz} = {35^0}\) (so le trong)
Ta có:
\(\widehat {ACz} + \widehat {zCB} = \widehat {ACB} \Rightarrow \widehat {zCB} = \widehat {ACB} - \widehat {ACz} = {80^0} - {35^0} = {45^0}\)
\( \Rightarrow \widehat {zCB} = \widehat {CBy}\left( { = {{45}^0}} \right)\)
Mà hai góc ở vị trí so le trong nên suy ra \(Cz//{\mkern 1mu} By\) (dấu hiệu nhận biết hai đường thẳng song song)
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{Cz//{\mkern 1mu} Ax\left( {gt} \right)}\\{C{\rm{z}}//{\mkern 1mu} By\left( {cmt} \right)}\end{array}} \right. \Rightarrow Ax//{\mkern 1mu} By\) .
Câu 4
Phương pháp
Xét hình tròn bán kính R:
Diện tích hình tròn = 3,14 . R2 , suy ra R
Chu vi hình tròn = 3,14 . R
Cách giải
Ta có: S = 3.14 . R2 hay 200 = 3,14. R2 . Do đó, \({R^2} = \dfrac{{200}}{{3,14}} \approx 63,7 \Rightarrow R = \sqrt {63,7} \approx 7,98(m)\)
Chu vi hình tròn đó là: C = 3,14 . R \( \approx \) 3,14 . 7,98 \( \approx \) 25,0572 (m)
Làm tròn 25,0572 với độ chính xác 0,05, tức là làm tròn đến chữ số thập phân thứ nhất.
Vì chữ số hàng làm tròn là 0, chữ số ngay sau hàng làm tròn là 5 nên ta cộng thêm 1 đơn vị vào chữ số hàng làm tròn, đồng thời bỏ đi các chữ số ở sau hàng làm tròn.
Ta được kết quả chu vi sân đấu làm tròn là 25,1 (m)
Câu 5
Phương pháp
Áp dụng tính chất hai đường thẳng phân biệt cùng vuông góc với đường thẳng thứ ba thì chúng song song với nhau.
- Tính chất hai đường thẳng song song.
Cách giải
Vì \(a \bot c,{\mkern 1mu} b \bot c\left( {gt} \right) \Rightarrow a//{\mkern 1mu} b \Rightarrow \widehat {aAB} + \widehat {ABb} = {180^0} \Rightarrow x + y = {180^0}\)(2 góc trong cùng phía bù nhau)
\( \Rightarrow x = {180^0} - y\)
Lại có:
\(\begin{array}{*{20}{l}}{2{\rm{x}} = 3y\left( {gt} \right) \Rightarrow 2\left( {{{180}^0} - y} \right) = 3y}\\{ \Leftrightarrow {{360}^0} - 2y = 3y}\\{ \Leftrightarrow 5y = {{360}^0} \Rightarrow y = {{360}^0}:5 = {{72}^0}}\\{ \Rightarrow x = {{180}^0} - {{72}^0} = {{108}^0}}\end{array}\)
Câu 6
Phương pháp:
Đánh giá giá trị của tử và mẫu
Chú ý: a4 \( \ge \) 0, với mọi a
Cách giải:
Vì (2x+1)4 \( \ge \) 0, với mọi x nên (2x+1)4 +2 \( \ge \) 2, với mọi x
\( \Rightarrow \dfrac{3}{{{{(2x + 1)}^4} + 2}} \le \dfrac{3}{2}\), với mọi x. Dấu “=” xảy ra khi 2x + 1 = 0 hay x = \(\dfrac{{ - 1}}{2}\)
Vậy Max M = \(\dfrac{3}{2}\).
Xem thêm Bài tập & Lời giải
Trong bài: Đề kiểm tra giữa học kì 1 Toán 7 Kết nối tri thức
Xem thêm lời giải Đề thi, đề kiểm tra Toán lớp 7 - Kết nối tri thức
Lớp 7 | Các môn học Lớp 7 | Giải bài tập, đề kiểm tra, đề thi Lớp 7 chọn lọc
Danh sách các môn học Lớp 7 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.
Toán Học
- Đề thi, đề kiểm tra Toán lớp 7 - Cánh diều
- Đề thi, đề kiểm tra Toán lớp 7 - Chân trời sáng tạo
- Đề thi, đề kiểm tra Toán lớp 7 - Kết nối tri thức
- Sách bài tập Toán 7 - Cánh diều
- Sách bài tập Toán 7 - Chân trời sáng tạo
- Sách bài tập Toán 7 - Kết nối tri thức
- SGK Toán 7 - Cánh diều
- SGK Toán 7 - Chân trời sáng tạo
- SGK Toán 7 - Kết nối tri thức
- Tài liệu Dạy - học Toán 7
- SBT Toán lớp 7
- Vở bài tập Toán 7
- Giải môn Toán học lớp 7
Vật Lý
Ngữ Văn
- Đề thi, đề kiểm tra Văn lớp 7 - Cánh diều
- Đề thi, đề kiểm tra Văn lớp 7 - Chân trời sáng tạo
- Đề thi, đề kiểm tra Văn lớp 7 - Kết nối tri thức
- Văn mẫu 7 - Cánh Diều
- Văn mẫu 7 - Chân trời sáng tạo
- Văn mẫu 7 - Kết nối tri thức
- SBT Văn 7 - Cánh diều
- SBT Văn 7 - Chân trời sáng tạo
- SBT Văn 7 - Kết nối tri thức
- Soạn văn 7 - Cánh diều chi tiết
- Soạn văn 7 - Cánh diều siêu ngắn
- Soạn văn 7 - Chân trời sáng tạo chi tiết
- Soạn văn 7 - Chân trời sáng tạo siêu ngắn
- Soạn văn 7 - Kết nối tri thức chi tiết
- Soạn văn 7 - Kết nối tri thức siêu ngắn
- SBT Ngữ văn lớp 7
- Tác giả - Tác phẩm văn 7
- Văn mẫu lớp 7
- Vở bài tập Ngữ văn lớp 7
- Soạn văn 7 chi tiết
- Soạn văn 7 ngắn gọn
- Soạn văn 7 siêu ngắn
- Bài soạn văn lớp 7 siêu ngắn
- Bài soạn văn 7
- Bài văn mẫu 7
Lịch Sử
- SBT Lịch sử và Địa lí 7 - Chân trời sáng tạo
- SBT Lịch sử và Địa lí 7 - Kết nối tri thức
- SGK Lịch sử và Địa lí lớp 7 - Cánh Diều
- SGK Lịch sử và Địa lí lớp 7 - Chân trời sáng tạo
- SGK Lịch sử và Địa lí lớp 7 - Kết nối tri thức
- Tập bản đồ Lịch sử 7
- SBT Lịch sử lớp 7
- VBT Lịch sử lớp 7
- Giải môn Lịch sử lớp 7
Địa Lý
Sinh Học
GDCD
Tin Học
- SBT Tin học 7 - Kết nối tri thức
- SGK Tin học 7 - Cánh Diều
- SGK Tin học 7 - Chân trời sáng tạo
- SGK Tin học 7 - Kết nối tri thức
- SGK Tin học lớp 7
Tiếng Anh
- Đề thi, đề kiểm tra Tiếng Anh lớp 7 - English Discovery
- Đề thi, đề kiểm tra Tiếng Anh lớp 7 - Right on!
- Đề thi, đề kiểm tra Tiếng Anh lớp 7 - iLearn Smart World
- Đề thi, đề kiểm tra Tiếng Anh lớp 7 - Friends Plus
- Đề thi, đề kiểm tra Tiếng Anh lớp 7 - Global Success
- SBT Tiếng Anh 7 - English Discovery
- SBT Tiếng Anh 7 - Right on!
- SBT Tiếng Anh 7 - iLearn Smart World
- SBT Tiếng Anh 7 - Friends Plus (Chân trời sáng tạo)
- SBT Tiếng Anh 7 - Global Success (Kết nối tri thức)
- Tiếng Anh 7 - English Discovery
- Tiếng Anh 7 - Right on!
- Tiếng Anh 7 - iLearn Smart World
- Tiếng Anh 7 - Friends Plus
- Tiếng Anh 7 - Global Success
- SBT Tiếng Anh lớp 7
- SGK Tiếng Anh lớp 7
- SBT Tiếng Anh lớp 7 mới
- Vở bài tập Tiếng Anh 7
- SGK Tiếng Anh lớp 7 Mới
Công Nghệ
- SGK Giáo dục công dân 7 - Cánh diều
- SGK Giáo dục công dân 7 - Chân trời sáng tạo
- SGK Giáo dục công dân 7 - Kết nối tri thức
- SGK Công nghệ 7 - Cánh diều
- SGK Công nghệ 7 - Chân trời sáng tạo
- SGK Công nghệ 7 - Kết nối tri thức
- SGK Công nghệ 7
Khoa Học
- SBT KHTN lớp 7 - Cánh diều
- SBT KHTN lớp 7 - Chân trời sáng tạo
- SBT KHTN lớp 7 - Kết nối tri thức
- SGK Khoa học tự nhiên 7 - Cánh diều
- SGK Khoa học tự nhiên 7 - Chân trời sáng tạo
- SGK Khoa học tự nhiên 7 - Kết nối tri thức
Âm Nhạc & Mỹ Thuật
- SGK Âm nhạc 7 - Cánh diều
- SGK Âm nhạc 7 - Chân trời sáng tạo
- SGK Âm nhạc 7 - Kết nối tri thức
- Âm nhạc và mỹ thuật lớp 7