Giải Bài 11 trang 39 sách bài tập toán 7 tập 1 - Cánh diều

Chứng tỏ rằng

Đề bài

Chứng tỏ rằng \(\sqrt 2 \) là số vô tỉ.

Phương pháp giải - Xem chi tiết

Ta chứng minh \(\sqrt 2 \) là số vô tỉ bằng cách chứng minh điều ngược lại là sai: giả sử \(\sqrt 2 \) không là số vô tỉ.

Lời giải chi tiết

Giả sử \(\sqrt 2 \) là số hữu tỉ.

Như vậy, \(\sqrt 2 \) có thể viết được dưới dạng \(\dfrac{m}{n}\) với \(m,n \in \mathbb{N}\) và \((m,n) = 1\).

Ta có:  \(\sqrt 2  = \dfrac{m}{n}\) nên \({\left( {\sqrt 2 } \right)^2} = {\left( {\dfrac{m}{n}} \right)^2}\) hay \(2 = \dfrac{{{m^2}}}{{{n^2}}}\). Suy ra: \({m^2} = 2{n^2}\).

Mà \((m,n) = 1\) nên \({m^2}\) chia hết cho 2 hay m chia hết cho 2. Do đó \(m = 2k\) với \(k \in \mathbb{N}\) và \((k,n) = 1\).

Thay \(m = 2k\) vào \({m^2} = 2{n^2}\) ta được: \(4{k^2} = 2{n^2}\) hay \({n^2} = 2{k^2}\).

Do \((k,n) = 1\) nên \({n^2}\) chia hết cho 2 hay n chia hết cho 2.

Suy ra mn đều chia hết cho 2 mâu thuẫn với \((m,n) = 1\).

Vậy \(\sqrt 2 \) không là số hữu tỉ mà là số vô tỉ. 

Xem thêm lời giải Sách bài tập Toán 7 - Cánh diều

Giải sách bài tập toán lớp 7 tập 1, tập 2 Cánh diều đầy đủ đại số và hình học với lời giải, phương pháp đi kèm cho tất cả các chương.

Chương 1: Số hữu tỉ - SBT

Chương 2: Số thực - SBT

Chương 3: Hình học trực quan - SBT

Chương 4: Góc. Đường thẳng song song - SBT

Lớp 7 | Các môn học Lớp 7 | Giải bài tập, đề kiểm tra, đề thi Lớp 7 chọn lọc

Danh sách các môn học Lớp 7 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.

Toán Học

Vật Lý

Ngữ Văn

Lịch Sử

Địa Lý

Sinh Học

GDCD

Tin Học

Tiếng Anh

Công Nghệ

Khoa Học

Âm Nhạc & Mỹ Thuật

Hoạt động trải nghiệm