Giải mục 2 trang 35, 36, 37 Chuyên đề học tập Toán 10 - Chân trời sáng tạo

Có thể dự đoán rằng, với mỗi \(n \in \mathbb{N}*\), \(\begin{array}{l}C_n^k = C_n^{n - k}\quad \quad \quad (0 \le k \le n)\quad (2)\\C_n^{k - 1} + C_n^k = C_{n + 1}^k\quad (1 \le k \le n)\quad (3)\end{array}\) Hãy chứng minh các công thức trên.

Bài làm:

HĐ Khám phá 2

Từ các đẳng thức như

\(\begin{array}{l}C_3^0 = C_3^3 = 1,\quad C_4^1 = C_4^3 = 4,\\C_3^0 + C_3^1 = C_4^1,\quad C_4^2 + C_4^3 = C_5^3,\end{array}\)

Có thể dự đoán rằng, với mỗi \(n \in \mathbb{N}*\),

\(\begin{array}{l}C_n^k = C_n^{n - k}\quad \quad \quad (0 \le k \le n)\quad (2)\\C_n^{k - 1} + C_n^k = C_{n + 1}^k\quad (1 \le k \le n)\quad (3)\end{array}\)

Hãy chứng minh các công thức trên.

Gợi ý: Sử dụng công thức \(C_n^k = \frac{{n!}}{{k!\left( {n - k} \right)!}},n \in \mathbb{N},0 \le k \le n.\)

Lời giải chi tiết:

\(C_n^k = \frac{{n!}}{{k!\left( {n - k} \right)!}} = \frac{{n!}}{{\left( {n - k} \right)!k!}} = \frac{{n!}}{{\left( {n - k} \right)!\left[ {n - (n - k)} \right]!}} = C_n^{n - k}\)

\(\begin{array}{l}C_n^{k - 1} + C_n^k = \frac{{n!}}{{(k - 1)!\left( {n - k + 1} \right)!}} + \frac{{n!}}{{k!\left( {n - k} \right)!}}\\ = \frac{{n!}}{{k!\left( {n + 1 - k} \right)!}}\left( {k + \left( {n + 1 - k} \right)} \right)\\ = \frac{{(n + 1)!}}{{k!\left( {n + 1 - k} \right)!}} = C_{n + 1}^k\end{array}\)


Thực hành 2

Sử dụng tam giác Pascal, hãy khai triển:

a) \({(2x + 1)^6}\)

b) \({(x - y)^7}\)

Phương pháp giải:

Lời giải chi tiết:

a) Sử dụng tam giác Pascal, ta có:

\(\begin{array}{l}{(2x + 1)^6} = {\left( {2x} \right)^6} + 6{\left( {2x} \right)^5} + 15{\left( {2x} \right)^4} + 20{\left( {2x} \right)^3} + 15{\left( {2x} \right)^2} + 6.2x + 1\\ = 64{x^6} + 192{x^5} + 240{x^4} + 160{x^3} + 60{x^2} + 12x + 1\end{array}\)

b) Sử dụng tam giác Pascal, ta có:

\(\begin{array}{l}{(x + ( - y))^7} = {x^7} + 7{x^6}( - y) + 21{x^5}{( - y)^2} + 35{x^4}{( - y)^3} + 35{x^3}{( - y)^4} + 21{x^2}{( - y)^5} + 7x{( - y)^6} + {( - y)^7}\\ = {x^7} - 7{x^6}y + 21{x^5}{y^2} - 35{x^4}{y^3} + 35{x^3}{y^4} - 21{x^2}{y^5} + 7x{y^6} - {y^7}\end{array}\)

 

Xem thêm lời giải Chuyên đề học tập Toán 10 - Chân trời sáng tạo

Để học tốt Chuyên đề học tập Toán 10 - Chân trời sáng tạo, loạt bài giải bài tập Chuyên đề học tập Toán 10 - Chân trời sáng tạo đầy đủ kiến thức, lý thuyết và bài tập được biên soạn bám sát theo nội dung sách giáo khoa Lớp 10.

Lớp 10 | Các môn học Lớp 10 | Giải bài tập, đề kiểm tra, đề thi Lớp 10 chọn lọc

Danh sách các môn học Lớp 10 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.

Toán Học

Vật Lý

Hóa Học

Ngữ Văn

Lịch Sử

Địa Lý

Sinh Học

GDCD

Tin Học

Tiếng Anh

Công Nghệ

Âm Nhạc & Mỹ Thuật

Hoạt động trải nghiệm