Giải mục 3 trang 37, 38 Chuyên đề học tập Toán 10 - Chân trời sáng tạo

Xác định hệ số của ({x^2}) trong khai triển của ({(3x + 2)^9})

Bài làm:

Thực hành 3

Xác định hệ số của \({x^2}\) trong khai triển của \({(3x + 2)^9}\)

Phương pháp giải:

Công thức nhị thức Newton: \({(a + b)^n} = C_n^0{a^n} + C_n^1{a^{n - 1}}b + ... + C_n^{n - 1}a{b^{n - 1}} + C_n^n{b^n}\)

Số hạng chứa \({x^k}\) trong khai triển của \({(ax + b)^n}\) là \(C_n^{n - k}{(ax)^k}{b^{n - k}}\)

Do đó hệ số của \({x^k}\) trong khai triển của \({(ax + b)^n}\) là \(C_n^{n - k}{a^k}{b^{n - k}}\)

Lời giải chi tiết:

Theo công thức nhị thức Newton, ta có:

\({(3x + 2)^9} = C_9^0{\left( {3x} \right)^9} + C_9^1{\left( {3x} \right)^8}2 + ... + C_9^k{\left( {3x} \right)^{9 - k}}{2^k} + ... + C_9^8\left( {3x} \right){2^8} + C_9^9{2^9}\)

Số hạng chứa \({x^2}\) ứng với \(9 - k = 2\) hay \(k = 7\). Do đó hệ số của \({x^2}\)  là

\(C_9^7{3^2}{2^7} = 36.9.128 = 41472\)


Thực hành 4

Biết rằng trong khai triển của \({(x + a)^6}\) với a là một số thực, hệ số của \({x^4}\) là 60. Tìm giá trị của a.

Phương pháp giải:

Công thức nhị thức Newton: \({(a + b)^n} = C_n^0{a^n} + C_n^1{a^{n - 1}}b + ... + C_n^{n - 1}a{b^{n - 1}} + C_n^n{b^n}\)

Số hạng chứa \({x^k}\) trong khai triển của \({(ax + b)^n}\) là \(C_n^{n - k}{(ax)^k}{b^{n - k}}\)

Do đó hệ số của \({x^k}\) trong khai triển của \({(ax + b)^n}\) là \(C_n^{n - k}{a^k}{b^{n - k}}\)

Lời giải chi tiết:

Áp dụng công thức nhị thức Newton, ta có:

\({(x + a)^6} = C_6^0{x^6} + C_6^1{x^5}a + ... + C_6^k{x^{6 - k}}{a^k} + ... + C_6^6{a^6}\)

Số hạng chứa \({x^4}\) ứng với \(6 - k = 4\) hay \(k = 2\). Hệ số của số hạng chứa \({x^4}\)  là \(C_6^2{a^2}\)

Theo giả thiết ta có: \(C_6^2{a^2} = 60\)

\( \Leftrightarrow 15{a^2} = 60 \Leftrightarrow {a^2} = 4 \Leftrightarrow \left[ \begin{array}{l}a = 2\\a =  - 2\end{array} \right.\)

Vậy \(a = 2\) hoặc \(a =  - 2\).


Thực hành 5

Chứng minh rằng, với mọi \(n \in \mathbb{N}*\), ta có

\(C_n^0 - C_n^1 + C_n^2 - C_n^3 + ... + {\left( { - 1} \right)^n}C_n^n = 0\)

Phương pháp giải:

Công thức nhị thức Newton: \({(a + b)^n} = C_n^0{a^n} + C_n^1{a^{n - 1}}b + ... + C_n^{n - 1}a{b^{n - 1}} + C_n^n{b^n}\)

Lời giải chi tiết:

Áp dụng công thức nhị thức Newton, ta có:

\({(1 + x)^n} = C_n^0 + C_n^1x + C_n^2{x^2} + ... + C_n^n{x^n}\)

Thay \(x =  - 1\) ta được:

\(0 = C_n^0 + ( - 1)C_n^1 + {( - 1)^2}C_n^2 + {( - 1)^3}C_n^3 + ... + {\left( { - 1} \right)^n}C_n^n\)

Hay \(C_n^0 - C_n^1 + C_n^2 - C_n^3 + ... + {\left( { - 1} \right)^n}C_n^n = 0\)


Vận dụng

Trong hộp A có 10 quả cầu được đánh số từ 1 đến 10. Người ta lấy một số quả cầu từ hộp A rồi cho vào hộp B. Có tất cả bao nhiêu cách lấy, tính cả trường hợp lấy 0 quả (tức là không lấy quả nào)?

Phương pháp giải:

Công thức nhị thức Newton: \({(a + b)^n} = C_n^0{a^n} + C_n^1{a^{n - 1}}b + ... + C_n^{n - 1}a{b^{n - 1}} + C_n^n{b^n}\)

Lời giải chi tiết:

Giả sử lấy k quả cầu từ hộp A cho sáng hộp B. \((0 \le k \le 10)\)

Để lấy k quả cầu, có \(C_{10}^k\) cách lấy. (trường hợp không lấy quả nào được tính là 1 cách, bằng \(C_{10}^0\))

Vậy số cách lấy một số quả cầu (kể cả cách lấy 0 quả) từ hộp A cho sang hộp B là:

\(C_{10}^0 + C_{10}^1 + C_{10}^2 + ... + C_{10}^{10} = {2^{10}} = 1024.\)

 

Xem thêm lời giải Chuyên đề học tập Toán 10 - Chân trời sáng tạo

Để học tốt Chuyên đề học tập Toán 10 - Chân trời sáng tạo, loạt bài giải bài tập Chuyên đề học tập Toán 10 - Chân trời sáng tạo đầy đủ kiến thức, lý thuyết và bài tập được biên soạn bám sát theo nội dung sách giáo khoa Lớp 10.

Lớp 10 | Các môn học Lớp 10 | Giải bài tập, đề kiểm tra, đề thi Lớp 10 chọn lọc

Danh sách các môn học Lớp 10 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.

Toán Học

Vật Lý

Hóa Học

Ngữ Văn

Lịch Sử

Địa Lý

Sinh Học

GDCD

Tin Học

Tiếng Anh

Công Nghệ

Âm Nhạc & Mỹ Thuật

Hoạt động trải nghiệm