Lý thuyết một số hệ thức về cạnh và đường cao trong tam giác vuông

Lý thuyết một số hệ thức về cạnh và đường cao trong tam giác vuông

Lý thuyết:

1. Hệ thức về cạnh và đường cao trong tam giác vuông 

Cho tam giác \(ABC\) vuông tại \(A\), đường cao \(AH\) (hình vẽ). Khi đó ta có các hệ thức sau:

 

+) \(A{B^2} = BH.BC\) và \(A{C^2} = CH.BC\) hay \({c^2} = a.c'\) và \({b^2} = ab'\) (1)

+) \(H{A^2} = HB.HC\) hay \({h^2} = c'b'\) (2)

+) \(AB.AC = BC.AH\) hay \(cb = ah\) (3)

+) \(\dfrac{1}{{A{H^2}}} = \dfrac{1}{{A{B^2}}} + \dfrac{1}{{A{C^2}}}\) hay \(\dfrac{1}{{{h^2}}} = \dfrac{1}{{{c^2}}} + \dfrac{1}{{{b^2}}}\) (4).

+) \(B{C^2} = A{B^2} + A{C^2}\) (Định lí Pitago). 

2. Các dạng toán cơ bản

Dạng 1: Tính độ dài các đoạn thẳng trong tam giác vuông

Phương pháp:

Sử dụng hệ thức về cạnh và đường cao trong tam giác vuông.

Dạng 2: Chứng minh các hệ thức liên quan giữa các yếu tố trong tam giác vuông

Phương pháp:

Ta thường sử dụng các kiến thức:

- Đưa về hai tam giác đồng dạng có chứa các đoạn thẳng có trong hệ thức.

- Sử dụng các hệ thức về cạnh và đường cao trong tam giác vuông để chứng minh.

Xemloigiai.com

Xem thêm lời giải SGK Toán lớp 9

Giải bài tập toán lớp 9 như là cuốn để học tốt Toán lớp 9. Tổng hợp công thức, lý thuyết, phương pháp giải bài tập đại số và hình học SGK Toán lớp 9 giúp luyện thi vào 10 hiệu quả. Giai toan 9 xem mục lục giai toan lop 9 sach giao khoa duoi day

PHẦN ĐẠI SỐ - TOÁN 9 TẬP 1

PHẦN HÌNH HỌC - TOÁN 9 TẬP 1

PHẦN ĐẠI SỐ - TOÁN 9 TẬP 2

PHẦN HÌNH HỌC - TOÁN 9 TẬP 2

CHƯƠNG I. CĂN BẬC HAI. CĂN BẬC BA

CHƯƠNG II. HÀM SỐ BẬC NHẤT

CHƯƠNG I. HỆ THỨC LƯỢNG TRONG TAM GIÁC VUÔNG

CHƯƠNG II. ĐƯỜNG TRÒN

CHƯƠNG III. HỆ HAI PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN

CHƯƠNG IV. HÀM SỐ y = ax^2 (a ≠ 0). PHƯƠNG TRÌNH BẬC HAI MỘT ẨN

CHƯƠNG III. GÓC VỚI ĐƯỜNG TRÒN

CHƯƠNG IV. HÌNH TRỤ - HÌNH NÓN - HÌNH CẦU

BÀI TẬP ÔN CUỐI NĂM - TOÁN 9

Xem Thêm

Lớp 9 | Các môn học Lớp 9 | Giải bài tập, đề kiểm tra, đề thi Lớp 9 chọn lọc

Danh sách các môn học Lớp 9 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.