Bài 15 trang 140 Tài liệu dạy – học Toán 9 tập 2

Giải bài tập Giải các phương trình sau:

Đề bài

Giải các phương trình sau:

a) \({x^2} + x - 2 = 0\)

b) \({x^4} + 3{x^2} - 4 = 0\)

c) \(2{x^2} - 3x + 1 = 0\)

d) \( - 2{x^2} + 8 = 0\)

e) \({x^4} - 4{x^2} - 5 = 0\)

f) \(2{x^4} - 5{x^2} + 2 = 0\)

h) \(\dfrac{{12}}{{x - 1}} - \dfrac{8}{{x + 1}} = 1\)

i) \(\dfrac{1}{{x - 2}} + \dfrac{3}{{6 - x}} = 2\)

Phương pháp giải - Xem chi tiết

Phương trình bậc hai \(a{x^2} + bx + c = 0\,\,\left( {a \ne 0} \right)\)có \(\Delta  = {b^2} - 4ac\)hoặc \(\Delta ' = b{'^2} - ac\,\,\left( {b = 2b'} \right)\)

+) Nếu \(\Delta  > 0\,\,\left( {\Delta ' > 0} \right)\)  thì phương trình có 2 nghiệm phân biệt \({x_{1,2}} = \dfrac{{ - b \pm \sqrt \Delta  }}{{2a}}\)\(\left( {{x_{1,2}} = \dfrac{{ - b' \pm \sqrt {\Delta '} }}{a}} \right)\)

+) Nếu \(\Delta  = 0\,\,\left( {\Delta ' = 0} \right)\)  thì phương trình có nghiệm kép \({x_{1,2}} = \dfrac{{ - b}}{{2a}}\)\(\left( {{x_{1,2}} = \dfrac{{ - b'}}{a}} \right)\).

+) Nếu \(\Delta  < 0\,\,\left( {\Delta ' < 0} \right)\) thì phương trình vô nghiệm.

Lời giải chi tiết

a) \({x^2} + x - 2 = 0\)

Ta có: \(\Delta  = {1^2} - 4.1.\left( { - 2} \right) = 9 > 0 \Rightarrow \) Phương trình có 2 nghiệm phân biệt \({x_1} = \dfrac{{ - 1 + 3}}{2} = 1;\,\,x = \dfrac{{ - 1 - 3}}{2} =  - 2\).

Vậy tập nghiệm của phương trình là \(S = \left\{ {1; - 2} \right\}\).

b) \({x^4} + 3{x^2} - 4 = 0\)

Đặt \({x^2} = t\,\,\left( {t \ge 0} \right)\), khi đó phương trình ban đầu trở thành \({t^2} + 3t - 4 = 0\) (*) ta có:

\(\Delta  = {3^2} - 4.1.\left( { - 4} \right) = 25 > 0 \Rightarrow \) Phương trình (*) có 2 nghiệm phân biệt

\({t_1} = \dfrac{{ - 3 + 5}}{2} = 1\,\,\left( {tm} \right);\)\(\,\,{t_2} = \dfrac{{ - 3 - 5}}{2} =  - 4\,\,\left( {ktm} \right)\)

Với \(t = 1 \Rightarrow {x^2} = 1 \Leftrightarrow x =  \pm 1\).

Vậy tập nghiệm của phương trình là \(S = \left\{ { \pm 1} \right\}\).

c) \(2{x^2} - 3x + 1 = 0\)

Ta có: \(\Delta  = {\left( { - 3} \right)^2} - 4.2.1 = 1 > 0 \Rightarrow \) Phương trình có 2 nghiệm phân biệt\({x_1} = \dfrac{{3 + 1}}{{2.2}} = 1;\,\,{x_2} = \dfrac{{3 - 1}}{{2.2}} = \dfrac{1}{2}\).

Vậy tập nghiệm của phương trình là \(S = \left\{ {1;\dfrac{1}{2}} \right\}\).

d) \( - 2{x^2} + 8 = 0 \Leftrightarrow 2{x^2} = 8 \)

\(\Leftrightarrow {x^2} = 4 \Leftrightarrow x =  \pm 2\).

Vậy tập nghiệm của phương trình là \(S = \left\{ { \pm 2} \right\}\).

e) \({x^4} - 4{x^2} - 5 = 0\)

Đặt \({x^2} = t\,\,\left( {t \ge 0} \right)\), khi đó phương trình ban đầu trở thành \({t^2} - 4t - 5 = 0\) (*) ta có:

\(\Delta ' = {\left( { - 2} \right)^2} - 1.\left( { - 5} \right) = 9 > 0 \Rightarrow \) Phương trình (*) có 2 nghiệm phân biệt \(\left\{ \begin{array}{l}{t_1} = \dfrac{{2 + 3}}{1} = 5\,\,\left( {tm} \right)\\{t_2} = \dfrac{{2 - 3}}{1} =  - 1\,\,\left( {ktm} \right)\end{array} \right.\)

Với \(t = 5 \Rightarrow {x^2} = 5 \Leftrightarrow x =  \pm \sqrt 5 \).

Vậy tập nghiệm của phương trình là \(S = \left\{ { \pm \sqrt 5 } \right\}\).

f) \(2{x^4} - 5{x^2} + 2 = 0\)

Đặt \({x^2} = t\,\,\left( {t \ge 0} \right)\), khi đó phương trình ban đầu trở thành \(2{t^2} - 5t + 2 = 0\) (*) ta có:

\(\Delta  = {\left( { - 5} \right)^2} - 4.2.2 = 9 > 0 \Rightarrow \) Phương trình (*) có 2 nghiệm phân biệt \(\left\{ \begin{array}{l}{t_1} = \dfrac{{5 + 3}}{{2.2}} = 2\,\,\left( {tm} \right)\\{t_2} = \dfrac{{5 - 3}}{{2.2}} = \dfrac{1}{2}\,\,\left( {tm} \right)\end{array} \right.\)

Với \(t = 2 \Rightarrow {x^2} = 2 \Leftrightarrow x =  \pm \sqrt 2 \).

Với \(t = \dfrac{1}{2} \Rightarrow {x^2} = \dfrac{1}{2} \Leftrightarrow x =  \pm \dfrac{{\sqrt 2 }}{2}\)

Vậy tập nghiệm của phương trình là \(S = \left\{ { \pm \sqrt 2 ; \pm \dfrac{{\sqrt 2 }}{2}} \right\}\).

h) \(\dfrac{{12}}{{x - 1}} - \dfrac{8}{{x + 1}} = 1\)

ĐK: \(x \ne  \pm 1\).

\(\begin{array}{l}Pt \Leftrightarrow \dfrac{{12\left( {x + 1} \right) - 8\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} = 1\\ \Leftrightarrow 12\left( {x + 1} \right) - 8\left( {x - 1} \right) = \left( {x + 1} \right)\left( {x - 1} \right)\\ \Leftrightarrow 12x + 12 - 8x + 8 = {x^2} - 1\\ \Leftrightarrow {x^2} - 4x - 21 = 0\,\,\left( * \right)\end{array}\)

Ta có \(\Delta ' = {\left( { - 2} \right)^2} - 1.\left( { - 21} \right) = 25 > 0 \Rightarrow \) Phương trình (*) có 2 nghiệm phân biệt \(\left\{ \begin{array}{l}{x_1} = \dfrac{{2 + 5}}{1} = 7\\{x_2} = \dfrac{{2 - 5}}{1} =  - 3\end{array} \right.\,\,\left( {tm} \right)\).

Vậy tập nghiệm của phương trình là \(S = \left\{ {7; - 3} \right\}\).

i) \(\dfrac{1}{{x - 2}} + \dfrac{3}{{6 - x}} = 2\)

ĐK: \(x \ne 2;\,\,x \ne 6\)

\(\begin{array}{l}Pt \Leftrightarrow \dfrac{{6 - x + 3\left( {x - 2} \right)}}{{\left( {x - 2} \right)\left( {6 - x} \right)}} = 2\\ \Leftrightarrow 6 - x + 3\left( {x - 2} \right) = 2\left( {x - 2} \right)\left( {6 - x} \right)\\ \Leftrightarrow 6 - x + 3x - 6 =  - 2{x^2} + 16x - 24\\ \Leftrightarrow 2{x^2} - 14x + 24 = 0\\ \Leftrightarrow {x^2} - 7x + 12 = 0\,\,\left( * \right)\end{array}\)

Ta có: \(\Delta  = {\left( { - 7} \right)^2} - 4.1.12 = 1 > 0 \Rightarrow \) Phương trình (*) có 2 nghiệm phân biệt \(\left\{ \begin{array}{l}{x_1} = \dfrac{{7 + 1}}{2} = 4\\{x_2} = \dfrac{{7 - 1}}{2} = 3\end{array} \right.\,\,\left( {tm} \right)\)

Vậy nghiệm của phương trình là \(S = \left\{ {3;4} \right\}\).

Xemloigiai.com

Xem thêm Bài tập & Lời giải

Trong bài: Ôn tập cuối năm – Đại số 9

Bài tập & Lời giải:

Xem thêm lời giải Tài liệu Dạy - học Toán 9

Giải bài tập Tài liệu Dạy - học Toán lớp 9, đầy đủ công thức, lý thuyết, định lí, chuyên đề toán. Phát triển tư duy đột phá trong dạy học Toán 9, để học tốt dạy học Toán 9

CHƯƠNG I : CĂN BẬC HAI - CĂN BẬC BA

CHƯƠNG II : HÀM SỐ BẬC NHẤT

CHƯƠNG III: HỆ PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN

CHƯƠNG IV: HÀM SỐ BẬC HAI VÀ PHƯƠNG TRÌNH BẬC HAI

CHƯƠNG I: HỆ THỨC LƯỢNG TRONG TAM GIÁC VUÔNG

CHƯƠNG II : ĐƯỜNG TRÒN

CHƯƠNG III: GÓC VỚI ĐƯỜNG TRÒN

Lớp 9 | Các môn học Lớp 9 | Giải bài tập, đề kiểm tra, đề thi Lớp 9 chọn lọc

Danh sách các môn học Lớp 9 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.