Bài 2 trang 139 Tài liệu dạy – học Toán 9 tập 2

Giải bài tập Cho hệ phương trình

Đề bài

Cho hệ phương trình \(\left\{ \begin{array}{l}x + my = 4\\nx + y =  - 3\end{array} \right.\)

a) Tìm giá trị của m, n để hệ phương trình nhận \(x = -2\) và \(y = 3\) làm nghiệm.

b) Tìm giá trị của m, n để hệ phương trình vô nghiệm.

c) Tìm giá trị của m, n để hệ phương trình có vô số nghiệm.

Phương pháp giải - Xem chi tiết

a) Thay \(x =  - 2;\,\,y = 3\) vào hệ phương trình và tìm m, n.

b) Hệ phương trình \(\left\{ \begin{array}{l}{a_1}x + {b_1}y = {c_1}\\{a_2}x + {b_2}y = {c_2}\end{array} \right.\) vô nghiệm \( \Leftrightarrow \dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} \ne \dfrac{{{c_1}}}{{{c_2}}}\,\,\left( {{a_2};{b_2} \ne 0} \right)\).

c) Hệ phương trình \(\left\{ \begin{array}{l}{a_1}x + {b_1}y = {c_1}\\{a_2}x + {b_2}y = {c_2}\end{array} \right.\) vô số nghiệm \( \Leftrightarrow \dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} = \dfrac{{{c_1}}}{{{c_2}}}\,\,\left( {{a_2};{b_2};{c_2} \ne 0} \right)\).

Lời giải chi tiết

a) Thay \(x =  - 2;\,\,y = 3\) vào hệ phương trình ta có:

\(\left\{ \begin{array}{l} - 2 + 3m = 4\\ - 2n + 3 =  - 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3m = 6\\2n = 6\end{array} \right. \)

\(\Leftrightarrow \left\{ \begin{array}{l}m = 2\\n = 3\end{array} \right.\).

Vậy khi \(m = 2,\,\,n = 3\) thì hệ phương trình nhận \(x =  - 2;\,\,y = 3\) làm nghiệm.

b) TH1: \(n = 0\), khi đó hệ phương trình trở thành

\(\left\{ \begin{array}{l}x + my = 4\\y =  - 3\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}x - 3m = 4\\y =  - 3\end{array} \right. \)

\(\Leftrightarrow \left\{ \begin{array}{l}x = 3m + 4\\y =  - 3\end{array} \right. \)

\(\Rightarrow \) Hệ phương trình có nghiệm \(\left( {3m + 4; - 3} \right)\) với mọi m \( \Rightarrow n = 0\) không thỏa mãn.

Chứng minh tương tự \(m = 0\) không thỏa mãn.

TH2: \(n \ne 0\). Khi đó hệ phương trình đã cho vô nghiệm

\( \Leftrightarrow \dfrac{1}{n} = \dfrac{m}{1} \ne \dfrac{4}{{ - 3}} \\\Leftrightarrow mn = 1;\,\,n \ne  - \dfrac{3}{4};\,\,m \ne \dfrac{{ - 4}}{3}\).

Vậy khi \(mn = 1;\,\,n \ne  - \dfrac{3}{4};\,\,m \ne \dfrac{{ - 4}}{3}\) thì hệ phương trình ban đầu vô nghiệm.

c) Theo chứng minh trên, khi \(mn = 0\) hệ phương trình có nghiệm duy nhất \( \Leftrightarrow mn = 0\) không thỏa mãn \( \Rightarrow mn \ne 0\).

Hệ phương trình ban đầu có vô số nghiệm

\( \Leftrightarrow \dfrac{1}{n} = \dfrac{m}{1} = \dfrac{4}{{ - 3}}\\\Leftrightarrow \left\{ \begin{array}{l}m = \dfrac{{ - 4}}{3}\\n = \dfrac{{ - 3}}{4}\end{array} \right.\,\,\left( {tm} \right)\).

Vậy \(m =  - \dfrac{4}{3};\,\,n =  - \dfrac{3}{4}\).

Xemloigiai.com

Xem thêm Bài tập & Lời giải

Trong bài: Ôn tập cuối năm – Đại số 9

Bài tập & Lời giải:

Xem thêm lời giải Tài liệu Dạy - học Toán 9

Giải bài tập Tài liệu Dạy - học Toán lớp 9, đầy đủ công thức, lý thuyết, định lí, chuyên đề toán. Phát triển tư duy đột phá trong dạy học Toán 9, để học tốt dạy học Toán 9

CHƯƠNG I : CĂN BẬC HAI - CĂN BẬC BA

CHƯƠNG II : HÀM SỐ BẬC NHẤT

CHƯƠNG III: HỆ PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN

CHƯƠNG IV: HÀM SỐ BẬC HAI VÀ PHƯƠNG TRÌNH BẬC HAI

CHƯƠNG I: HỆ THỨC LƯỢNG TRONG TAM GIÁC VUÔNG

CHƯƠNG II : ĐƯỜNG TRÒN

CHƯƠNG III: GÓC VỚI ĐƯỜNG TRÒN

Lớp 9 | Các môn học Lớp 9 | Giải bài tập, đề kiểm tra, đề thi Lớp 9 chọn lọc

Danh sách các môn học Lớp 9 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.