Bài 1.64 trang 19 SBT Đại số và Giải tích 11 Nâng cao

Giải bài 1.64 trang 19 sách bài tập Đại số và Giải tích 11 Nâng cao. Giải các phương trình sau...

Bài làm:

Giải các phương trình sau:

LG a

\(\sin \left( {{\pi  \over 2} + 2x} \right)\cot 3x + \sin \left( {\pi  + 2x} \right) \)\(- \sqrt 2 \cos 5x = 0\)

Lời giải chi tiết:

Điều kiện \(\sin 3x \ne 0\).

\(\sin \left( {{\pi  \over 2} + 2x} \right)\cot 3x + \sin \left( {\pi  + 2x} \right) \)\(- \sqrt 2 \cos 5x = 0\)

\(\eqalign{
& \Leftrightarrow \sin \left( {{\pi \over 2} + 2x} \right)\cot 3x + \sin \left( {\pi + 2x} \right) - \sqrt 2 \cos 5x = 0 \cr 
& \Leftrightarrow \cos 2x{{\cos 3x} \over {\sin 3x}} - \sin 2x - \sqrt 2 \cos 5x = 0 \cr 
& \Leftrightarrow \cos 2x\cos 3x - \sin 2x\sin 3x - \sqrt 2 \sin 3x\cos 5x = 0 \cr 
& \Leftrightarrow \cos 5x\left( {1 - \sqrt 2 \sin 3x} \right) = 0 \cr} \)

\(\begin{array}{l}
\Leftrightarrow \left[ \begin{array}{l}
\cos 5x = 0\\
\sin 3x = \frac{1}{{\sqrt 2 }}
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
5x = \frac{\pi }{2} + k\pi \\
3x = \frac{\pi }{4} + k2\pi \\
3x = \frac{{3\pi }}{4} + k2\pi
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = \frac{\pi }{{10}} + \frac{{k\pi }}{5}\\
x = \frac{\pi }{{12}} + \frac{{k2\pi }}{3}\\
x = \frac{\pi }{4} + \frac{{k2\pi }}{3}
\end{array} \right.
\end{array}\)

Vậy \(x = {\pi  \over {10}} + {{k\pi } \over 5},x = {\pi  \over {12}} + {{2k\pi } \over 3},\)\(x = {\pi  \over 4} + {{2k\pi } \over 3}\).


LG b

\({\tan ^2}x + \cos 4x = 0\)

Lời giải chi tiết:

Ta có \({\tan ^2}x = {{{{\sin }^2}x} \over {{{\cos }^2}x}} = {{1 - \cos 2x} \over {1 + \cos 2x}}\) và \(\cos 4x = 2{\cos ^2}2x - 1.\)

Điều kiện \(\cos 2x \ne  - 1,\) phương trình đã cho có thể biến đổi như sau:

\({\tan ^2}x + \cos 4x = 0 \)

\(\Leftrightarrow {{1 - \cos 2x} \over {1 + \cos 2x}} = 1 -2 {\cos ^2}2x\)

\(\begin{array}{l}
\Leftrightarrow 1 - \cos 2x = \left( {1 - 2{{\cos }^2}2x} \right)\left( {1 + \cos 2x} \right)\\
\Leftrightarrow 1 - \cos 2x = 1 - 2{\cos ^2}2x + \cos 2x - 2{\cos ^3}2x\\
\Leftrightarrow 2{\cos ^3}2x + 2{\cos ^2}2x - 2\cos 2x = 0\\
\Leftrightarrow 2\cos 2x\left( {{{\cos }^2}2x + \cos 2x - 1} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
\cos 2x = 0\\
{\cos ^2}2x + \cos 2x - 1 = 0
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
\cos 2x = 0\\
\cos 2x = \frac{{ - 1 + \sqrt 5 }}{2}\\
\cos 2x = \frac{{ - 1 - \sqrt 5 }}{2}\left( {VN} \right)
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
2x = \frac{\pi }{2} + k\pi \\
2x = \pm \arccos \frac{{ - 1 + \sqrt 5 }}{2} + k2\pi
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = \frac{\pi }{4} + \frac{{k\pi }}{2}\\
x = \pm \frac{1}{2}\arccos \frac{{ - 1 + \sqrt 5 }}{2} + k\pi
\end{array} \right.
\end{array}\)


LG c

\(9\sin x + 6\cos x - 3\sin 2x + \cos 2x = 8\)

Lời giải chi tiết:

Ta có:

\(\eqalign{
& 9\sin x + 6\cos x - 3\sin 2x + \cos 2x = 8 \cr 
& \Leftrightarrow 9\sin x + 6\cos x - 6\sin x\cos x + 2{\cos ^2}x - 1 - 8=0 \cr 
& \Leftrightarrow 9\left( {\sin x - 1} \right) - 6\cos x\left( {\sin x - 1} \right) + 2\left( {1 - \sin x} \right)\left( {1 + \sin x} \right) = 0 \cr 
& \Leftrightarrow \left( {\sin x - 1} \right)\left( {7 - 6\cos x - 2\sin x} \right) = 0 \cr} \)

\( \Leftrightarrow \left[ \begin{array}{l}
\sin x - 1 = 0\\
2\sin x + 6\cos x = 7
\end{array} \right.\)

Phương trình \(2\sin x + 6\cos x = 7\) vô nghiệm do \({2^2} + {6^2} < {7^2}\).

Do đó \(\sin x = 1 \Leftrightarrow x = \frac{\pi }{2} + k2\pi \).


LG d

\({\sin ^4}\left( {x + {\pi  \over 4}} \right) = {1 \over 4} + {\cos ^2}x - {\cos ^4}x\)

Lời giải chi tiết:

Ta có:

\(\eqalign{
& {\sin ^4}\left( {x + {\pi \over 4}} \right) = {1 \over 4} + {\cos ^2}x - {\cos ^4}x\cr& \Leftrightarrow {1 \over 4}{\left[ {1 - \cos \left( {2x + {\pi \over 2}} \right)} \right]^2} = {1 \over 4} + {\cos ^2}x - {\cos ^4}x \cr 
& \Leftrightarrow {1 \over 4}{\left( {1 + \sin 2x} \right)^2} = {1 \over 4} + {\cos ^2}x\left( {1 - {{\cos }^2}x} \right) \cr 
& \Leftrightarrow {1 \over 2}\sin 2x + {1 \over 4}{\sin ^2}2x = {1 \over 4}\left( {1 + \cos 2x} \right)\left( {1 - \cos 2x} \right) \cr 
& \Leftrightarrow {1 \over 2}\sin 2x + {1 \over 4}{\sin ^2}2x = {1 \over 4}\left( {1 - {{\cos }^2}2x} \right) \cr} \)

\(\begin{array}{l}
\Leftrightarrow 2\sin 2x + {\sin ^2}2x = 1 - {\cos ^2}2x\\
\Leftrightarrow 2\sin 2x + {\sin ^2}2x = {\sin ^2}2x\\
\Leftrightarrow \sin 2x = 0\\
\Leftrightarrow 2x = k\pi \\
\Leftrightarrow x = \frac{{k\pi }}{2}
\end{array}\)

Vậy \(x = {{k\pi } \over 2}\).


LG e

\(\left( {2\sin x + 1} \right)\left( {3\cos 4x + 2\sin x - 4} \right) + 4{\cos ^2}x = 3\)

Lời giải chi tiết:

Ta có:

\(\eqalign{
& \left( {2\sin x + 1} \right)\left( {3\cos 4x + 2\sin x - 4} \right) + 4{\cos ^2}x = 3 \cr 
& \Leftrightarrow 6\sin x\cos 4x + 4{\sin ^2}x - 8\sin x \cr&+ 3\cos 4x + 2\sin x - 4 + 4{\cos ^2}x - 3 = 0 \cr 
& \Leftrightarrow 6\sin x\cos 4x + 3\cos 4x - 6\sin x - 3 = 0 \cr 
& \Leftrightarrow \left( {6\sin x\cos 4x - 6\sin x} \right) + \left( {3\cos 4x - 3} \right) = 0 \cr&\Leftrightarrow 6\sin x\left( {\cos 4x - 1} \right) + 3\left( {\cos 4x - 1} \right) = 0\cr& \Leftrightarrow 3 \left( {2\sin x + 1} \right)\left( {\cos 4x - 1} \right) = 0 \cr} \)

\(\begin{array}{l}
\Leftrightarrow \left[ \begin{array}{l}
\sin x = - \frac{1}{2}\\
\cos 4x = 1
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = - \frac{\pi }{6} + k2\pi \\
x = \frac{{7\pi }}{6} + k2\pi \\
x = \frac{{k\pi }}{2}
\end{array} \right.
\end{array}\)

Vậy \(x = {{k\pi } \over 2},x =  - {\pi  \over 6} + 2k\pi ,\)\(x = {{7\pi } \over 6} + 2k\pi \).


LG f

\(\sqrt 2 {\sin ^3}\left( {x + {\pi  \over 4}} \right) = 2\sin x\)

Lời giải chi tiết:

Do \(\sqrt 2 \sin \left( {x + {\pi  \over 4}} \right) = \sin x + \cos x\)  nên phương trình đã cho có thể biến đổi như sau:

\(\sqrt 2 {\sin ^3}\left( {x + {\pi  \over 4}} \right) = 2\sin x \)

\(\Leftrightarrow {\left( {\sin x + \cos x} \right)^3} = 4\sin x\)

Dễ thấy \(\cos x=0\) không thỏa mãn phương trình trên.

Với điều kiện \(\cos x \ne 0,\) ta chia hai vế của phương trình cho \({\cos ^3}x\ne 0\) ta được:

\(\begin{array}{l}
{\left( {\sin x + \cos x} \right)^3} = 4\sin x\\
\Leftrightarrow \frac{{{{\left( {\sin x + \cos x} \right)}^3}}}{{{{\cos }^3}x}} = \frac{{4\sin x}}{{{{\cos }^3}x}}\\
\Leftrightarrow {\left( {\frac{{\sin x + \cos x}}{{\cos x}}} \right)^3} = \frac{{4\sin x}}{{\cos x}}.\frac{1}{{{{\cos }^2}x}}\\
\Leftrightarrow {\left( {\tan x + 1} \right)^3} = 4\tan x\left( {1 + {{\tan }^2}x} \right)\\
\Leftrightarrow {\tan ^3}x + 3{\tan ^2}x + 3\tan x + 1 = 4\tan x + 4{\tan ^3}x\\
\Leftrightarrow 3{\tan ^3}x - 3{\tan ^2}x + \tan x - 1 = 0\\
\Leftrightarrow 3{\tan ^2}x\left( {\tan x - 1} \right) + \left( {\tan x - 1} \right) = 0\\
\Leftrightarrow \left( {\tan x - 1} \right)\left( {3{{\tan }^2}x + 1} \right) = 0\\
\Leftrightarrow \tan x - 1 = 0\,\,\left( {do\,3{{\tan }^2}x + 1 > 0} \right)\\
\Leftrightarrow \tan x = 1\\
\Leftrightarrow x = \frac{\pi }{4} + k\pi
\end{array}\)

Vậy \(x = {\pi  \over 4} + k\pi \).

Xemloigiai.com

Xem thêm lời giải SBT Toán lớp 11 Nâng cao

Giải sách bài tập toán hình học và đại số lớp 11. Giải chi tiết tất cả câu hỏi trong các chương và bài chi tiết trong SBT hình học và đại số toán 11 nâng cao với cách giải nhanh và ngắn gọn nhất

ĐẠI SỐ VÀ GIẢI TÍCH SBT 11 NÂNG CAO

HÌNH HỌC SBT 11 NÂNG CAO

CHƯƠNG 1: HÀM SỐ LƯỢNG GIÁC VÀ PHƯƠNG TRÌNH LƯỢNG GIÁC

CHƯƠNG 2: TỔ HỢP VÀ XÁC SUẤT

CHƯƠNG 3: DÃY SỐ, CẤP SỐ CỘNG VÀ CẤP SỐ NHÂN

CHƯƠNG 4: GIỚI HẠN

CHƯƠNG 5: ĐẠO HÀM

CHƯƠNG 1: PHÉP DỜI HÌNH VÀ PHÉP ĐỒNG DẠNG

CHƯƠNG 2: ĐƯỜNG THẲNG VÀ MẶT PHẲNG TRONG KHÔNG GIAN. QUAN HỆ SONG SONG

CHƯƠNG 3. VECTƠ KHÔNG GIAN. QUAN HỆ VUÔNG GÓC

Lớp 11 | Các môn học Lớp 11 | Giải bài tập, đề kiểm tra, đề thi Lớp 11 chọn lọc

Danh sách các môn học Lớp 11 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.