Bài 1.7 trang 7 SBT Đại số và Giải tích 11 Nâng cao

Giải bài 1.7 trang 7 sách bài tập Đại số và Giải tích 11 Nâng cao. Chứng minh rằng các hàm số sau đây là hàm số tuần hoàn, tìm chu kì và xét tính chẵn lẻ của mỗi hàm số:

Bài làm:

Chứng minh rằng các hàm số sau đây là hàm số tuần hoàn, tìm chu kì và xét tính chẵn lẻ của mỗi hàm số:

LG a

\(y = {\sin ^2}2x + 1\) 

Lời giải chi tiết:

\(y = {\sin ^2}2x + 1 = {{1 - \cos 4x} \over 2} + 1\) \( = {3 \over 2} - {1 \over 2}\cos 4x\).

Hàm số này là một hàm số tuần hoàn với chu kì \({\pi  \over 2}\).

Đó là một hàm số chẵn.


LG b

\(y = {\cos ^2}x - {\sin ^2}x\)

Lời giải chi tiết:

\(y = {\cos ^2}x - {\sin ^2}x = \cos 2x\), đó là một hàm số tuần hoàn với chu kì \(\pi \)

Nó là một hàm số chẵn.


LG c

\(y = {\cos ^2}x + {\sin ^2}x\)

Lời giải chi tiết:

\(y = {\cos ^2}x + {\sin ^2}x = 1\), với mọi \(x\) nên \(y\) là một hàm hằng

Do đó với số T ta có \({\cos ^2}(x + T) + {\sin ^2}(x + T) = {\cos ^2}x + {\sin ^2}x\) với mọi \(x\)

Đó là một hàm số tuần hoàn nhưng không có chu kì (trong các số T dương không có số T nhỏ nhất).

Hàm hằng là một hàm số chẵn.

Xemloigiai.com

Xem thêm lời giải SBT Toán lớp 11 Nâng cao

Giải sách bài tập toán hình học và đại số lớp 11. Giải chi tiết tất cả câu hỏi trong các chương và bài chi tiết trong SBT hình học và đại số toán 11 nâng cao với cách giải nhanh và ngắn gọn nhất

ĐẠI SỐ VÀ GIẢI TÍCH SBT 11 NÂNG CAO

HÌNH HỌC SBT 11 NÂNG CAO

CHƯƠNG 1: HÀM SỐ LƯỢNG GIÁC VÀ PHƯƠNG TRÌNH LƯỢNG GIÁC

CHƯƠNG 2: TỔ HỢP VÀ XÁC SUẤT

CHƯƠNG 3: DÃY SỐ, CẤP SỐ CỘNG VÀ CẤP SỐ NHÂN

CHƯƠNG 4: GIỚI HẠN

CHƯƠNG 5: ĐẠO HÀM

CHƯƠNG 1: PHÉP DỜI HÌNH VÀ PHÉP ĐỒNG DẠNG

CHƯƠNG 2: ĐƯỜNG THẲNG VÀ MẶT PHẲNG TRONG KHÔNG GIAN. QUAN HỆ SONG SONG

CHƯƠNG 3. VECTƠ KHÔNG GIAN. QUAN HỆ VUÔNG GÓC

Lớp 11 | Các môn học Lớp 11 | Giải bài tập, đề kiểm tra, đề thi Lớp 11 chọn lọc

Danh sách các môn học Lớp 11 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.