Bài 2.10 trang 48 SBT hình học 12
Đề bài
Một hình trụ có các đáy là hai hình tròn tâm O và O’ bán kính r và có đường cao \(h = r\sqrt 2 \) . Gọi A là một điểm trên đường tròn tâm O và B là một điểm trên đường tròn tâm O’ sao cho OA vuông góc với O’B.
a) Chứng minh rằng các mặt bên của tứ diện OABO’ là những tam giác vuông. Tính thể tích của tứ diện này.
b) Gọi \((\alpha )\) là mặt phẳng qua AB và song song với OO’. Tính khoảng cách giữa trục OO’ và mặt phẳng \((\alpha )\).
c) Chứng minh rằng \((\alpha )\) tiếp xúc với mặt trụ trục OO’ có bán kính bằng \({{r\sqrt 2 } \over 2}\) dọc theo một đường sinh.
Phương pháp giải - Xem chi tiết
a) Sử dụng các kiến thức đã học để kiểm tra các tam giác mặt bên của tứ diện là hình tam gíac vuông.
Tính thể tích theo công thức \( V = \dfrac{1}{3}Sh\).
b) Góc giữa đường thẳng và mặt phẳng bằng góc giữa đường thẳng và hình chiếu của đường thẳng lên mặt phẳng đó.
c) Chỉ ra mặt trụ và kết luận.
Lời giải chi tiết
a) Vì trục OO’ vuông góc với các đáy nên \(\displaystyle {\rm{OO}}' \bot OA;{\rm{O}}O' \bot O'B\) .
Vậy các tam giác AOO’ và BO’O vuông tại O và O’.
Theo giả thiết ta có \(\displaystyle AO \bot O'B\) mà \(\displaystyle AO \bot {\rm{OO}}' = > AO \bot ({\rm{OO}}'B)\).
Do đó, \(\displaystyle AO \bot OB\) nên tam giác AOB vuông tại O.
Tương tự, ta chứng minh được tam giác AO’B vuông tại O’. Thể tích hình chóp OABO’ là: \(\displaystyle V = {1 \over 3}{S_{\Delta {\rm{OO}}'B}}.AO\)
Hay \(\displaystyle V = {1 \over 3}.{1 \over 2}OO'.O'B.AO \) \(\displaystyle = {1 \over 6}.r\sqrt 2 .{r^2} = {{\sqrt 2 } \over 6}{r^3}\)
b) Ta có \(\displaystyle (\alpha )\) là (ABB’).
Vì OO’ // \(\displaystyle (\alpha )\) nên khoảng cách giữa OO’ và \(\displaystyle (\alpha )\) bằng khoảng cách từ O đến \(\displaystyle (\alpha )\).
Dựng \(\displaystyle OH \bot AB'\) ta có \(\displaystyle OH \bot (\alpha )\) .
Tam giác OAB' vuông cân tại O có OA=OB'=r nên \(AB' = \sqrt {O{A^2} + OB{'^2}} \) \( = \sqrt {{r^2} + {r^2}} = r\sqrt 2 \)
\(OH \bot AB'\) nên OH cũng là đường trung tuyến của tam giác \( \Rightarrow OH = \frac{1}{2}AB' = \frac{{r\sqrt 2 }}{2}\)
Vậy khoảng cách cần tìm là \(\displaystyle OH = {{r\sqrt 2 } \over 2}\).
c) Đường tròn tâm O có bán kính bằng \(\displaystyle {{r\sqrt 2 } \over 2}\) tiếp xúc với AB’ tại H là trung điểm của AB’.
Do đó mặt phẳng \(\displaystyle (\alpha )\) song song với trục OO’ chứa tiếp tuyến của đường tròn đáy, nên \(\displaystyle (\alpha )\) tiếp xúc với mặt trụ dọc theo một đường sinh, với mặt trụ có trục OO’ và có bán kính đáy bằng \(\displaystyle {{r\sqrt 2 } \over 2}\).
Xemloigiai.com
Xem thêm Bài tập & Lời giải
Trong bài: Bài 1: Khái niệm về mặt tròn xoay
Bài tập & Lời giải:
- 👉 Bài 2.1 trang 46 SBT hình học 12
- 👉 Bài 2.2 trang 47 SBT hình học 12.
- 👉 Bài 2.3 trang 47 SBT hình học 12
- 👉 Bài 2.4 trang 47 SBT hình học 12
- 👉 Bài 2.5 trang 47 SBT hình học 12
- 👉 Bài 2.6 trang 47 SBT hình học 12
- 👉 Bài 2.7 trang 47 SBT hình học 12
- 👉 Bài 2.8 trang 47 SBT hình học 12
- 👉 Bài 2.9 trang 47 SBT hình học 12
- 👉 Bài 2.11 trang 48 SBT hình học 12
- 👉 Bài 2.12 trang 48 SBT hình học 12
Xem thêm lời giải SBT Toán lớp 12
Lớp 12 | Các môn học Lớp 12 | Giải bài tập, đề kiểm tra, đề thi Lớp 12 chọn lọc
Danh sách các môn học Lớp 12 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.
Toán Học
- Đề thi, đề kiểm tra Toán lớp 12
- SBT Toán lớp 12 Nâng cao
- SBT Toán 12 Nâng cao
- SGK Toán 12 Nâng cao
- SBT Toán lớp 12
- SGK Toán lớp 12
Vật Lý
- SBT Vật lí 12 Nâng cao
- SGK Vật lí lớp 12 Nâng cao
- SBT Vật lí lớp 12
- SGK Vật lí lớp 12
- Giải môn Vật lí lớp 12
Hóa Học
- Đề thi, đề kiểm tra Hóa lớp 12
- SBT Hóa học 12 Nâng cao
- SGK Hóa học lớp 12 Nâng cao
- SBT Hóa lớp 12
- SGK Hóa lớp 12
Ngữ Văn
- Đề thi, đề kiểm tra Ngữ Văn 12 mới
- Soạn văn 12
- SBT Ngữ văn lớp 12
- Luyện dạng đọc hiểu
- Văn mẫu 12
- Soạn văn 12 chi tiết
- Soạn văn ngắn gọn lớp 12
- Soạn văn 12 siêu ngắn
- Bài soạn văn lớp 12 siêu ngắn
- Bài soạn văn 12
Lịch Sử
Địa Lý
Sinh Học
- Đề thi, đề kiểm tra Sinh lớp 12
- SGK Sinh lớp 12 Nâng cao
- SBT Sinh lớp 12
- SGK Sinh lớp 12
- Giải môn Sinh học lớp 12
GDCD
Tin Học
Tiếng Anh
- Đề thi, đề kiểm tra Tiếng Anh 12 mới
- SBT Tiếng Anh lớp 12
- Ngữ pháp Tiếng Anh
- SGK Tiếng Anh 12
- SBT Tiếng Anh lớp 12 mới
- SGK Tiếng Anh 12 Mới