Bài 2.2 trang 47 SBT hình học 12.
Bài làm:
Một hình nón tròn xoay có thiết diện qua trục là một tam giác vuông cân có cạnh bằng \(a\).
LG a
Tính diện tích toàn phần và thể tích hình nón đó.
Phương pháp giải:
Sử dụng các công thức \({S_{tp}} = {S_{xq}} + {S_d} = \pi rl + \pi {r^2}\) và \(V = \dfrac{1}{3}\pi {r^2}h\).
Lời giải chi tiết:
Thiết diện qua trục của hình nón là tam giác vuông cân cạnh \(a\) nên hình nón có đường sinh \(l=a\), có đường kính đáy \(a\sqrt 2 \) nên bán kính đáy \(r = \dfrac{{a\sqrt 2 }}{2}\), và có chiều cao \(h = r = \dfrac{{a\sqrt 2 }}{2}\)
Gọi \({S_{xq}}\) là diện tích xung quanh của hình nón, ta có: \({S_{xq}} = \pi rl = \pi \dfrac{{a\sqrt 2 }}{2}.a = \dfrac{{\pi {a^2}\sqrt 2 }}{2}\)
Gọi \(S\) là diện tích đáy của hình nón, ta có \({S_d} = \pi {r^2} = \dfrac{{\pi {a^2}}}{2}\)
Vậy diện tích toàn phần của hình nón đã cho là:
\({S_{tp}} = {S_{xq}} + {S_d}\)\( = \dfrac{1}{2}\pi {a^2}\sqrt 2 + \dfrac{1}{2}\pi {a^2}\) \( = \dfrac{1}{2}\pi {a^2}\left( {\sqrt 2 + 1} \right)\)
Hình nón có thể tích là: \(V = \dfrac{1}{3}\pi {r^2}h\)\( = \dfrac{1}{3}\pi {\left( {\dfrac{{a\sqrt 2 }}{2}} \right)^2}.\dfrac{{a\sqrt 2 }}{2}\) \( = \dfrac{1}{{12}}\pi {a^3}\sqrt 2 \)
LG b
Một mặt phẳng đi qua đỉnh tạo với mặt phẳng đáy một góc \({60^0}\). Tính diện tích thiết diện được tạo nên.
Phương pháp giải:
Xác định góc \({60^0}\) (góc giữa hai mặt phẳng bằng góc giữa hai đường thẳng cùng vuông góc giao tuyến).
Tính diện tích theo công thức \(S = \dfrac{1}{2}dh\) với \(d\) là độ dài cạnh đáy tam giác, \(h\) là chiều cao
Lời giải chi tiết:
Xét mặt phẳng \((DAM) \) đi qua đỉnh \(D\) tạo với mặt phẳng đáy một góc \({60^0}\), cắt đường tròn đáy tại hai điểm \(A\) và \(M\).
Từ tâm \(O\) của đường tròn đáy ta vẽ \(OH \bot AM\), do vậy \(H\) là trung điểm của đoạn \(AM\). Ta có \(AM \bot (DOH)\) vì \(AM \bot OH\) và \(AM \bot DO\).
Vậy \(\widehat {DHO} = {60^0}\) và \(\sin {60^0} = \dfrac{{DO}}{{DH}}\) hay \(DH = \dfrac{{DO}}{{\sin {{60}^0}}} = \dfrac{{a\sqrt 2 }}{2}:\dfrac{{\sqrt 3 }}{2} = \dfrac{{a\sqrt 2 }}{{\sqrt 3 }}\)
Gọi \({S_{\Delta DAM}}\) là diện tích thiết diện cần tìm, ta có: \({S_{\Delta DAM}} = \dfrac{1}{2}AM.DH = AH.DH\)
Mà \(A{H^2} = D{A^2} - D{H^2}\)\( = {a^2} - \dfrac{{2{a^2}}}{3} = \dfrac{{{a^2}}}{3}\) \( \Rightarrow AH = \dfrac{a}{{\sqrt 3 }}\)
Vậy \({S_{\Delta DAM}} = AH.DH \) \(= \dfrac{a}{{\sqrt 3 }}.\dfrac{{a\sqrt 2 }}{{\sqrt 3 }} = \dfrac{{{a^2}\sqrt 2 }}{3}\)
Xemloigiai.com
Xem thêm Bài tập & Lời giải
Trong bài: Bài 1: Khái niệm về mặt tròn xoay
Bài tập & Lời giải:
- 👉 Bài 2.1 trang 46 SBT hình học 12
- 👉 Bài 2.3 trang 47 SBT hình học 12
- 👉 Bài 2.4 trang 47 SBT hình học 12
- 👉 Bài 2.5 trang 47 SBT hình học 12
- 👉 Bài 2.6 trang 47 SBT hình học 12
- 👉 Bài 2.7 trang 47 SBT hình học 12
- 👉 Bài 2.8 trang 47 SBT hình học 12
- 👉 Bài 2.9 trang 47 SBT hình học 12
- 👉 Bài 2.10 trang 48 SBT hình học 12
- 👉 Bài 2.11 trang 48 SBT hình học 12
- 👉 Bài 2.12 trang 48 SBT hình học 12
Xem thêm lời giải SBT Toán lớp 12
Lớp 12 | Các môn học Lớp 12 | Giải bài tập, đề kiểm tra, đề thi Lớp 12 chọn lọc
Danh sách các môn học Lớp 12 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.
Toán Học
- Đề thi, đề kiểm tra Toán lớp 12
- SBT Toán lớp 12 Nâng cao
- SBT Toán 12 Nâng cao
- SGK Toán 12 Nâng cao
- SBT Toán lớp 12
- SGK Toán lớp 12
Vật Lý
- SBT Vật lí 12 Nâng cao
- SGK Vật lí lớp 12 Nâng cao
- SBT Vật lí lớp 12
- SGK Vật lí lớp 12
- Giải môn Vật lí lớp 12
Hóa Học
- Đề thi, đề kiểm tra Hóa lớp 12
- SBT Hóa học 12 Nâng cao
- SGK Hóa học lớp 12 Nâng cao
- SBT Hóa lớp 12
- SGK Hóa lớp 12
Ngữ Văn
- Đề thi, đề kiểm tra Ngữ Văn 12 mới
- Soạn văn 12
- SBT Ngữ văn lớp 12
- Luyện dạng đọc hiểu
- Văn mẫu 12
- Soạn văn 12 chi tiết
- Soạn văn ngắn gọn lớp 12
- Soạn văn 12 siêu ngắn
- Bài soạn văn lớp 12 siêu ngắn
- Bài soạn văn 12
Lịch Sử
Địa Lý
Sinh Học
- Đề thi, đề kiểm tra Sinh lớp 12
- SGK Sinh lớp 12 Nâng cao
- SBT Sinh lớp 12
- SGK Sinh lớp 12
- Giải môn Sinh học lớp 12
GDCD
Tin Học
Tiếng Anh
- Đề thi, đề kiểm tra Tiếng Anh 12 mới
- SBT Tiếng Anh lớp 12
- Ngữ pháp Tiếng Anh
- SGK Tiếng Anh 12
- SBT Tiếng Anh lớp 12 mới
- SGK Tiếng Anh 12 Mới